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Adding in other agents
Recall, our environments were single-agent. 

How can you plan a sequence of actions if you 
have no control over what other agents will do? 

Simple games are an environment with multiple 
agents that keeps most of the other restrictions 
in place 

● Checkers, Chess, Go 
● Poker, Rock-paper-scissors, Blackjack 
● Roulette, Backgammon, Monopoly 



Two player, perfect information, zero-sum games

Two player 
In general, we could have many players, but many classic games only have two.  

Perfect information 
All players know the exact state of the game. 

Zero-sum 
The result (utility) for each player at the end of the game is exactly the opposite of 
the opponent. 

These assumptions let us reason about the goals of the other agent.



Search trees for 2-player zero-sum games (1)
We can still construct the state space as before, 
but the other player (opponent) gets to make 
every other move. 

In tree form, we choose actions on alternating 
layers. 

We are choosing actions that maximize our 
utility, opponent is choosing actions that 
minimize our utility 

Idea: keep expanding nodes until we hit a 
terminal state, propagate the final utility back to 
initial action choice, pick the action with the best 
utility.



Search trees for 2-player zero-sum games (2)
Notes 

● Result of searching this tree is a single 
move (have to wait for opponent’s move) 

● To pick the optimal move, we might need 
to expand the entire search tree 

● We are assuming the opponent is 
rational (picks the best moves), but it 
doesn’t matter if they’re not! 

A recursive definition of the Minimax value of a 
state



A simple example

Minimax(B) = 3 (b1) 
Minimax(C) = 2 (c1) 
Minimax(D) = 2 (d3) 
Minimax(A) = 3 (a1)



The Minimax algorithm
def Minimax_Decision(state): 
  best_action,best_val = None,-math.inf 
  for a in actions(state): 
    s_prime = result(a,state) 
    a_val = Min_Value(s_prime) 
    if a_val>best_val: 
      best_val = a_val 
      best_action = a 
  return best_action

def Max_Value(state): 
  if isTerminal(state): 
    return utility(state) 
  v = -math.inf 
  for a,s in successors(state): 
    v = max(v,Min_Value(s)) 
  return v

def Min_Value(state): 
  if isTerminal(state): 
    return utility(state) 
  v = math.inf 
  for a,s in successors(state): 
    v = min(v,Max_Value(s)) 
  return v



The Minimax algorithm - notes

Basically, DFS! 

● Complete? Yes (if tree is finite) 
● Optimal? Yes 
● Time complexity? O(bm) (b: branching factor, m: depth of tree) 
● Space complexity? O(m*b)  

For chess, b≅35, m≅100 

Expanding the full tree isn’t going to work!



Do we always need to expand every node? (1)

x y



Do we always need to expand every node? (2)

Range of 
possible 
Minimax 
values



Unreachable nodes
If we can move to m, which has a strictly better 
Minimax value than n, we don’t need to explore 
the path containing n. 

Define the following helper variables 

𝛼 = the value of the highest value choice we 
have found so far at any choice point along the 
path for Max 

𝛽 = the value of the lowest value choice we 
have found so far at any choice point along the 
path for Min



The Alpha-Beta search algorithm

def Min_Value(state,alpha,beta): 
  if isTerminal(state): 
    return utility(state) 
  v = math.inf 
  for a,s in successors(state): 
    v = min(v,Max_Value(s,alpha,beta)) 
    if v<= alpha: 
      return v 
    beta = min(beta,v) 
  return v

def Max_Value(state,alpha,beta): 
  if isTerminal(state): 
    return utility(state) 
  v = -math.inf 
  for a,s in successors(state): 
    v = max(v,Min_Value(s,alpha,beta)) 
    if v >= beta: 
      return v 
    alpha = max(alpha,v) 
  return v

def Alpha_Beta_Search(state): 
  best_action,best_val = None,-math.inf 
  for a in actions(state): 
    s_prime = result(a,state) 
    a_val = Min_Value(s_prime,-math.inf,math.inf) 
    if a_val>best_val: 
      best_val = a_val 
      best_action = a 
  return best_action



Alpha-Beta notes
Pruning does not affect the optimality of the final 
result 

Which paths we can prune highly depends on 
the expansion order (just like DFS) 

Worst case, same complexity as Minimax 

With the best ordering, time complexity: O(bm/2) 
(effective branching factor √b) 

For chess, b≅6 instead of 35 

6100 is still pretty big



Alternatives to finding the optimal solution

● Use Cutoff-Test and Eval instead of Terminal and Utility 
○ Cutoff-Test checks to see if terminal, or if we’ve already expanded past some depth limit 
○ Eval provides an estimate of the true utility of this node without searching all the way down 

to the leaves. Similar to the heuristic from previous lectures 
● Use Iterative Deepening Search and return the move selected by the 

deepest completed search (alternatively, use IDS to help with move ordering) 
● Use a lookup table of previously visited states (transposition table, 

memoization) 
○ Kind of like the closed list from previous lectures 
○ Need to have a cache-like structure to keep memory usage bounded



Games of Chance
Plenty of games include elements of 
randomness 

● Poker, Blackjack, Solitaire (shuffling) 
● Backgammon, Monopoly (dice) 
● Roulette, Pachinko, Slots (mechanical) 

We can still use search, if we modify our search 
tree to include probabilities with edges 

For adversarial games, we can introduce 
another player, “Chance”, and use a slightly 
modified version of Minimax



Expectiminimax

The “Expectiminimax” value is the same as Minimax except that for chance 
nodes we take the expected value of all the children 

We end up with a version of adversarial search that uses this instead of 
Minimax-Value.



Stochastic Actions
In the single-agent case, instead of having a 
“Chance” player, we can model actions as 
having non-deterministic outcomes  

Deterministic actions 
Result(s,a) = s’ 

Stochastic actions 
Result(s,a) = {s1,s2,...,sk} 

This type of representation is called an “And-Or 
search tree”
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Solutions for And-Or search trees (no cycles)

As long as there are no cycles, we can still do 
search! 

The result of searching an And-Or tree is no 
longer a sequence of actions, but a 
contingency plan: 

[Clean, if S=5 then [Right, Clean] else [Left]] 

An acyclic contingency plan has a nested set of 
sub-plans for each possible outcome, and can 
also be represented as a tree 

Clean

Right

Clean

Left

“Plan Tree”



One version of And-Or Search

def or_search(state, prob, path): 
  if prob.goal_test(state): 
    return empty plan 
  if state in path: 
    return failure   #cycle 
  for action in prob.acts(state): 
    S = prob.result(state,action) 
    np = [state,]+path 
    plan = and_search(S, prob, np) 
    if plan != failure: 
      return [action,]+plan 
  return failure

def and_or_search(prob): 
  or_search(prob.initstate,prob,[])

def and_search(states, prob, path): 
  plans = list() 
  for s in states: 
    subplan=or_search(s,prob,path) 
    if subplan == failure: 
      return failure 
    plans.append(subplan) 
  return plans

Like DFS, but with a base-case for cycles, and 
alternating AND/OR layers. Compare Fig 4.11



Solutions for And-Or search trees (with cycles)

Actually, even if there are cycles, we can 
sometimes find a solution. 

If each outcome of a non-deterministic action 
occurs eventually, we can still find a “solution” 
that will… eventually… get to the goal. 

To keep our solutions compact, we can 
introduce labels for repeated steps 

[ L1: Clean, if S=5 then L1 else [Right ...]]

Clean

Right

Clean



Summary and preview

Wrapping up 

● Games with multiple agents can be solved with similar search methods, when certain 
assumptions are made that let us reason about the objectives of the other agents 

● Minimax uses an alternating, DFS-like search to pick the best action for the current 
state 

● We can effectively increase the depth of the trees we can search in a fixed time by 
using Alpha-Beta pruning 

Next time 

● Introducing stochasticity


