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Directly modeling class probability

Let’s look at modeling the probability that a given x has class y. For now, restrict
ourselves to binary classification, and the Bernoulli distribution.

y — {O, 1}, X = ]RD
p(y | %;6) = ho(x)" (1 = ho(x))' "
he(x) = p(y = 1| x;6)

So we need a hypothesis class that maps from RP to [0,1]
hg : X — [O, 1]



The logistic function (aka sigmoid)
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The logistic function (1D example)
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Logistic Regression - MLE (1)

y={0,1}, X=RP

p(y | x;0) = he(x)Y(1 — hg(x))' ™Y
ho(x) =p(y =1|x;6)

Plug in our definitions to get an objective to minimize

L(he; S HP( (D) 4,00 |h0>

NLL(hg;S) = —log L(hg;S) = — Zlogp ((x(i),y(i)) | hg)

=1

N
——Y log [hg (x5 (1 — b, (x@)))(l—y(”)]
1=1

log(a - b) = loga + logb
log(a®) = bloga

Mz

D log ho(xV) + (1 — y©) log(1 — ho(xD))]
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Logistic Regression - MLE (2)

Find the derivative so we can use gradient descent

N
VoNLL(hg; S) = —Vo )
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Using: chain rule, derivative of log, and definition of h
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Logistic Regression - MLE (3)

d
--0(2) = 0(2)(1 - 0(2))

Use the derivative of the logistic function to get some terms to cancel

VoNLL(hg; S) = —
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Using: chain rule, derivative of sigma



Logistic Regression - MLE (4)

Do some rearranging to simplify the terms inside the brackets
N
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Logistic Regression - MLE (5)

It turns out, we can use a linear algebra representation like we did with linear

regression
_ y(l) -
y(2)
Y =
|y

?

hy =

h,g(x(l))
he(X(Z))

ho(xV))

Using these we can rewrite the gradient of the NLL as

V¢NLL(hg;S) = X "(hg —Y)

_xy
. x@®

_ xny




Logistic Regression vs Linear Regression

It turns out that this loss function is convex, just like linear regression! (proof hint:
find the Hessian, show that it is pos. def.). We can use Gradient Descent.

Actually, the gradient for Linear Regression and Logistic Regression are quite

similar

Logistic Regression
VoNLL(hg;S) = X" (hy —Y)

Linear Regression
1

VoLs(hg) = N[XTXH —X'Y]
— 1 T
= X (X6 — Y]
= iXT[m, ~Y]

N




Logistic Regression with Regularization

Just like with Basis Function Expansion, we can also apply regularization to
Logistic Regression:

Regularized Logistic Regression
Vo [NLL(hg; S) + A|0]|*] = X "(hg —Y) + A0

Regularization is important here, because otherwise gradient descent will “push”
16]| =< to make p(y=y() | hy(x))—1 when the data is linearly separable.



Linear Separability

What kinds of data will Logistic Regression work well on?
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Datasets where class can be separated by a straight line (hyperplane) are called
linearly separable.



Composing multiple logistic functions

To handle non-linear datasets, we could use the hy(x, . x,)
Basis Function Expansion ftrick, or...
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Feed-forward Neural Network preview
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Summary and preview

Wrapping up

Logistic Regression is a way of modeling the probability of the class label
The MLE gives us a gradient that we can plug in to Gradient Descent to fit the
model parameters

e Logistic Regression can fit linearly separable data well (to the point that we
need to use regularization to prevent overfitting)

Next time

e Support Vector Machines



