
Variations on Search
CS 480

Intro to Artificial Intelligence

Adding in other agents
Recall, our environments were single-agent.

How can you plan a sequence of actions if you
have no control over what other agents will do?

Simple games are an environment with multiple
agents that keeps most of the other restrictions
in place

● Checkers, Chess, Go
● Poker, Rock-paper-scissors, Blackjack
● Roulette, Backgammon, Monopoly

Two player, perfect information, zero-sum games

Two player
In general, we could have many players, but many classic games only have two.

Perfect information
All players know the exact state of the game.

Zero-sum
The result (utility) for each player at the end of the game is exactly the opposite of
the opponent.

These assumptions let us reason about the goals of the other agent.

Search trees for 2-player zero-sum games (1)
We can still construct the state space as before,
but the other player (opponent) gets to make
every other move.

In tree form, we choose actions on alternating
layers.

We are choosing actions that maximize our
utility, opponent is choosing actions that
minimize our utility

Idea: keep expanding nodes until we hit a
terminal state, propagate the final utility back to
initial action choice, pick the action with the best
utility.

Search trees for 2-player zero-sum games (2)
Notes

● Result of searching this tree is a single
move (have to wait for opponent’s move)

● To pick the optimal move, we might need
to expand the entire search tree

● We are assuming the opponent is
rational (picks the best moves), but it
doesn’t matter if they’re not!

A recursive definition of the Minimax value of a
state

A simple example

Minimax(B) = 3 (b1)
Minimax(C) = 2 (c1)
Minimax(D) = 2 (d3)
Minimax(A) = 3 (a1)

The Minimax algorithm
def Minimax_Decision(state):
 best_action,best_val = None,-math.inf
 for a in actions(state):
 s_prime = result(a,state)
 a_val = Min_Value(s_prime)
 if a_val>best_val:
 best_val = a_val
 best_action = a
 return best_action

def Max_Value(state):
 if isTerminal(state):
 return utility(state)
 v = -math.inf
 for a,s in successors(state):
 v = max(v,Min_Value(s))
 return v

def Min_Value(state):
 if isTerminal(state):
 return utility(state)
 v = math.inf
 for a,s in successors(state):
 v = min(v,Max_Value(s))
 return v

The Minimax algorithm - notes

Basically, DFS!

● Complete? Yes (if tree is finite)
● Optimal? Yes
● Time complexity? O(bm) (b: branching factor, m: depth of tree)
● Space complexity? O(m*b)

For chess, b≅35, m≅100

Expanding the full tree isn’t going to work!

Do we always need to expand every node? (1)

x y

Do we always need to expand every node? (2)

Range of
possible
Minimax
values

Unreachable nodes
If we can move to m, which has a strictly better
Minimax value than n, we don’t need to explore
the path containing n.

Define the following helper variables

𝛼 = the value of the highest value choice we
have found so far at any choice point along the
path for Max

𝛽 = the value of the lowest value choice we
have found so far at any choice point along the
path for Min

The Alpha-Beta search algorithm

def Min_Value(state,alpha,beta):
 if isTerminal(state):
 return utility(state)
 v = math.inf
 for a,s in successors(state):
 v = min(v,Max_Value(s,alpha,beta))
 if v<= alpha:
 return v
 beta = min(beta,v)
 return v

def Max_Value(state,alpha,beta):
 if isTerminal(state):
 return utility(state)
 v = -math.inf
 for a,s in successors(state):
 v = max(v,Min_Value(s,alpha,beta))
 if v >= beta:
 return v
 alpha = max(alpha,v)
 return v

def Alpha_Beta_Search(state):
 best_action,best_val = None,-math.inf
 for a in actions(state):
 s_prime = result(a,state)
 a_val = Min_Value(s_prime,-math.inf,math.inf)
 if a_val>best_val:
 best_val = a_val
 best_action = a
 return best_action

Alpha-Beta notes
Pruning does not affect the optimality of the final
result

Which paths we can prune highly depends on
the expansion order (just like DFS)

Worst case, same complexity as Minimax

With the best ordering, time complexity: O(bm/2)
(effective branching factor √b)

For chess, b≅6 instead of 35

6100 is still pretty big

Alternatives to finding the optimal solution

● Use Cutoff-Test and Eval instead of Terminal and Utility
○ Cutoff-Test checks to see if terminal, or if we’ve already expanded past some depth limit
○ Eval provides an estimate of the true utility of this node without searching all the way down

to the leaves. Similar to the heuristic from previous lectures
● Use Iterative Deepening Search and return the move selected by the

deepest completed search (alternatively, use IDS to help with move ordering)
● Use a lookup table of previously visited states (transposition table,

memoization)
○ Kind of like the closed list from previous lectures
○ Need to have a cache-like structure to keep memory usage bounded

Games of Chance
Plenty of games include elements of
randomness

● Poker, Blackjack, Solitaire (shuffling)
● Backgammon, Monopoly (dice)
● Roulette, Pachinko, Slots (mechanical)

We can still use search, if we modify our search
tree to include probabilities with edges

For adversarial games, we can introduce
another player, “Chance”, and use a slightly
modified version of Minimax

Expectiminimax

The “Expectiminimax” value is the same as Minimax except that for chance
nodes we take the expected value of all the children

We end up with a version of adversarial search that uses this instead of
Minimax-Value.

Stochastic Actions
In the single-agent case, instead of having a
“Chance” player, we can model actions as
having non-deterministic outcomes

Deterministic actions
Result(s,a) = s’

Stochastic actions
Result(s,a) = {s1,s2,...,sk}

This type of representation is called an “And-Or
search tree”

A B

“Clean”

A B A B

Search Tree

Solutions for And-Or search trees (no cycles)

As long as there are no cycles, we can still do
search!

The result of searching an And-Or tree is no
longer a sequence of actions, but a
contingency plan:

[Clean, if S=5 then [Right, Clean] else [Left]]

An acyclic contingency plan has a nested set of
sub-plans for each possible outcome, and can
also be represented as a tree

Clean

Right

Clean

Left

“Plan Tree”

One version of And-Or Search

def or_search(state, prob, path):
 if prob.goal_test(state):
 return empty plan
 if state in path:
 return failure #cycle
 for action in prob.acts(state):
 S = prob.result(state,action)
 np = [state,]+path
 plan = and_search(S, prob, np)
 if plan != failure:
 return [action,]+plan
 return failure

def and_or_search(prob):
 or_search(prob.initstate,prob,[])

def and_search(states, prob, path):
 plans = list()
 for s in states:
 subplan=or_search(s,prob,path)
 if subplan == failure:
 return failure
 plans.append(subplan)
 return plans

Like DFS, but with a base-case for cycles, and
alternating AND/OR layers. Compare Fig 4.11

Solutions for And-Or search trees (with cycles)

Actually, even if there are cycles, we can
sometimes find a solution.

If each outcome of a non-deterministic action
occurs eventually, we can still find a “solution”
that will… eventually… get to the goal.

To keep our solutions compact, we can
introduce labels for repeated steps

[L1: Clean, if S=5 then L1 else [Right ...]]

Clean

Right

Clean

Summary and preview

Wrapping up

● Games with multiple agents can be solved with similar search methods, when certain
assumptions are made that let us reason about the objectives of the other agents

● Minimax uses an alternating, DFS-like search to pick the best action for the current
state

● We can effectively increase the depth of the trees we can search in a fixed time by
using Alpha-Beta pruning

Next time

● Introducing stochasticity

