Smoothing

CS 480
Intro to Artificial Intelligence

Smoothing

What if we want to know the probability of the state variable at a given point in
time in the past?

""" T

ED <

If we want to know about X, and we have evidence from E, ., we should
incorporate that (rather than just using E,.,)

Forward-Backward (1) E&D (B

The new probability we care about is p(X,|e,.;) which we can split into two pieces

p(Xk | 61:75) :p(Xk | 61:k76k—|—1:t)

Bayes rule = 'p(ek+1:t | Xk, 61;k) . p(Xk | el:k)

Conditional Independence | — °p(€k+1:t | Xk) . p(Xk | el;k)

/

Let's take a closer look at this term We already know how to compute this!

Forward-Backward (2)) @5

P(€k+1:t | Xk) = ZP(Bk_p_Lt, Xk+1 = h | Xk) Marginalize out X,
h

Definition of
conditional prob

Cond. Indep.

Split e, into
€k+1 AN €y,p4

Cond. Indep.

- Zp(ek-i-l:t | Xky Xk+1 = h) 'p(X’H‘l =h | Xk)
h

- Zp(ek+1:t | Xkt1 = h) - p(Xp1 = h | Xi)
h

— Zp(ek+17ek+2!t | Xk+]_ — h) p(Xk+1 — h | Xk)

h
= Zp(ek-H | Xk+1 = h) - p(ex+2:t | Xe+1 =h) - p(Xg41 = h | Xi)
h

Sensor Model Recurrence! Transition Model

Forward-Backward (3) E B

So our equation for smoothing is

p(Xk | e1:t) = o - p(Xk | e1:x) - P(€rt1:t | Xk)

. =aoa- 1. ©Obgt1
Where f is the “forward” variable
fi.: = p(Xt | 61:t)

=a-ples | Xe) Y p(Xe | Xemr =h) - p(Xp—1 =h | e1:1)
And b is the “backward” variabléz

bii1:t = plert1:¢ | Xk)
= plersr | Xer1 = h) - pleryar | Xep1 = h) - p(Xky1 = h| X)
h

Base case: by, 1, = p(e.14X,) =1

Forward-Backward (4)) B

So we have an equation for how to smooth a sequence of evidence for a single
timestep, how do we do this for all the timesteps?
p(Xk | el:t) = p(Xk: I e1:I<:) 'p(€k+1:t | Xk)

=a-fi., ©bryie

def forward backward(sensor m, transition m, prior, evidence):
fv[0] = prior
b = numpy.ones (len (prior))
for i in range(l,t+1):

fv[i] = forward(fv[i-1],evidence[i], sensor m,transition m)
for i in range(t,0,-1):
smoothed[1] = normalize (fv[i]*Db)

b = backward (b, evidence[i], sensor m,transition m)
return smoothed

Key Idea: save the forward pass computations for use during the backward pass

Weather example (1)

Example problem: a security guard would like to know about the weather. They

can see people entering/leaving with umbrellas, but can’t see directly whether it's
raining or not.

Rr.[P(Rr)
t 0.7
f | 03

{ .
/ :
Umbrella, Umbrella,

Weather example (2) fx = o #le 1 X0 2 p([Xioy = 1) p(Xis =R | ere-)

h

Observations: (U,=True, U,=True) S zh:p(k1 | Xi1 = h) - plenrat | X1 = h) - p(Xpq1 = h | Xi)

Forward pass R, | P(R)

f., = p(R,) = <0.5, 0.5> 1 03

f.., = « <0.9,0.2>%(<0.7,0.3>*0.5 +<0.3,0.7>*0.5)
= ¢ <0.45,0.1> = <0.818, 0.182>

f., = a <0.9,0.2>%(<0.7,0.3>*.818+<0.3,0.7>*.182)

= a <0.565, 0.075> = <0.883, 0.117>

Umbre lla,+ |

Backward pass

t
/
Umbrella, Umbrella,
b32=1

b,,=(.9"1"<.7,.3> + .2*1*<.3,.7>) = <0.69,0.41>, smoothed = <0.927,0.073>
b,,=(.9".69*<.7,.3> + .2*.41*<.3,.7>) = <.459,.243>, smoothed = <0.894,0.106>

The most likely sequence (1)

What is the most likely sequence of states?

Rain Rain, Rain, Rain, Rains

frue true true frue frue
@) <

false false Jalse false false
Umbrella; true frue Jalse frue frue

8182 5155 0361 0334 0210
(b) <

18181 —=1.0491 1237 0173 0024

m, m., m; .3 m, m.s

Note: not the same as the most likely state at each step!

The most likely sequence (2) (ED CliD @5

Rephrase: what is the probability of the last state X, in the most likely sequence?

Bayes’ Rule on e, and x,.., X,

max p(z1:e—1, X¢ | e1:) = max a- pleg | 214-1, X, €1-1) - P(T1:6-1, Xt | €1:0-1)
Sensor Markov = max a -ples | Xt) - p(T1:6—1, Xt | €1:6—1)
Product rule on X, X, |= Imax a -ples | Xt) - p(Xe | T1:0-1,€1:6-1) - P(T1:6-1 | €1:6-1)
Transition Markov = glta_xl a-ples | Xe) p(Xe | 24—1) - p(T1:4-1 | €1:0-1)

=a-ple; | Xt) -maxp(Xy | £4—1) - max p(x1.4—2, Xt—1 = T4—1 | €1:4—1)
Tt—1 T1:t—2

Sensor Model Transition Model Recurrence!

The most likely sequence (3)

Define the max variable

mj.; = Imax p(xl:t—hXt | 61:1;)
T1:t—1

= - p(et | Xt) . I:gla,)l(p(Xt | xt—l) ® mij.t+—1

Compare with the forward variable
f1.. = p(Xt | 61:t)

=a-ple: | Xt) ZP(Xt | Xi—1=h)©f1.11
3

Swapped sum for max

The Viterbi algorithm

1. Init with m,., = p(X,) (prior)

2. Foreachiin1:t

a. Compute m; Rain | Rain, Rain, Rain, Rains

b. Store the best state that leads to X; (bold

rue true true rue rue
3. max(m,.) is the probability of the most false false false false false

likely sequence Umbrella; true true false true true
4. The actual sequence can be recovered by 3182 5155 0361 0334 0210

following backpointers from the most likely (b) X

final state 1818 (—=.0491 1237 0173 0024

m, ; m,., m,.s

Filtering, smoothing, Viterbi

Exact Filtering
f,..: space O(|S]), time O(|S|*T), Online

Smoothing (forward-backward)

f,..: space O(|S|*T), time O(|S|*T)

b, space O(|S]), time O(|S|*T)

Offline (fixed-lag smoothing online version)

Most Likely Sequence (Viterbi)
m, .. space O(|S|*T), time O(|S|*T), Offline

Summary and preview

Wrapping up

Two more inference algorithms: Smoothing, and Viterbi
All of these inference algorithms can be modified to work with Bayes nets with

different structures
e Additionally, for some Bayes nets, we can actually learn the parameters given

sequences of observations (Expectation-Maximization)

Next time

e Search, as an interlude to ML

