Neural Networks

CS 480
Intro to Artificial Intelligence



A simplified diagram of a neuron
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The neuron fires after the input exceeds some threshold,
propagating signal to the next layer of neurons



A computational “model” of a neuron (1)
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A computational “model” of a neuron (2)
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Activation functions

Introduce some non-linearity (otherwise, same as linear regression)
e Some popular choices:
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As “logic circuits” (1)

Let X={0,1}2, Y={0,1}, g(a) = 1 ifa>0 else O
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As “logic circuits” (2) X W .
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As “logic circuits” (3)

Let X={0,1}2, Y={0,1}, g(a) = 1 ifa>0 else O
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A single neuron is equivalent to picking a hyperplane.
Can’t correctly label data that is not linearly separable.

A2 y
X, — Wy N\ 1

W4 “Bias” weight

e
« O



As “logic circuits” (4)

Let X={0,1}2, Y={0,1}, g(a) = 1 ifa>0 else O
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In general, we can build any logic circuit with a y=0 t Xy

network of neurons, as long as we have enough units
in each layer.




Feed-forward networks

e A composition of multiple activation functions
e No “internal state”, just an input->output mapping
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The perceptron

e Asingle “layer”, one unit per output
Simplified problem domain
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How can we learn the weights?




The perceptron learning rule
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wik — wik+a- (g —h(xD)) -zl
The perceptron learning rule - notes

e |If the predicted output and the actual output agree, weight doesn’t change
( (y-h(x)) = 0 © don’t change weight )

e |If predicted output is 0 and actual output is 1, weight wasn'’t large enough to get past
threshold: increase weight
( (y-h(x)) > 0 = increase weight )

e |If predicted output is 1 and actual output is 0, weight was too large, decrease
( (y-h(x)) < 0 = decrease weight )

e Learning rate a controls how much to change weight based on a single example (if
training data contains noise, make small changes)

e |f dataset is linearly separable, the perceptron rule is guaranteed to fit the training data
in a finite number of steps



More complex networks

e Notice, that for a single layer, the weights
for different outputs do not interact:
training can happen in parallel
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For different activation functions, use
Stochastic Gradient Descent

For multiple layers, weights do interact...
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Stochastic Gradient Descent for NNs

Like Gradient Descent, except we only use a Notes:

single point instead of an entire dataset
e We want to move to a minimum of the

Loop: error, so we move down the gradient with

Pick (x(@, y®) from the training data the (-1)

Foreach w,;: e Gradient Descent, like hill-climbing can

o @ @) get stuck in local optima. Empirically,
(] (2
Wy k <~ Wik + (—1)0‘7&0 o (w, %™, y™) Stochastic Gradient Descent seems to be
If the weights stop changing, done! able to avoid getting stuck.
Where
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Gradient of the error function, single layer (1)
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Gradient of the error function, single layer (2)
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Comparing Perceptron rule with SGD (single layer)

Perceptron rule
Wj,k < Wik + Q- (yz(:) — h(x")) - :vﬁ-“

e Guaranteed global convergence (linearly
separable data)
Requires step threshold function
Perceptrons (single layers) only

SGD (single layer)

Wjk < Wik + - (y;(f) — ak)g’(ink)wy)

e Probabilistic convergence in the limit
e Works with any g() that has a derivative
e Generalizes to more than one layer

How can we generalize this to more than one
layer?



“The Backward Propagation of Error”
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The derivative of the error function for a weight can be written in terms of

e The derivative of the threshold function (g’)
e The input from the previous layer (activations)
e The error from the following layer (error)



Weight updates for multilayer networks

Wik < Wik +a-aj - Ag

where for the output layer

Ay = (yx — ak) - g'(ink)

and for hidden layers

Delta from following layer

A =g (ing) - (wik - Ag)
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Summary and preview

Wrapping up

Perceptrons: easy to train for linearly separable functions
Stochastic Gradient Descent: a variant of GD using a single training datapoint
at a time

e Backprop for training multi-layer feed-forward neural networks, has two

stages layer by layer:
o Feed signal forward, store activations
o Propagate error backwards, update weights

Next time: Deep Learning



