Neural Networks

CS 480
Intro to Artificial Intelligence

A simplified diagram of a neuron

Axonal arborization

AN

Axon from another cell

Dendrite

\/

Synapses

Cell body or Soma

The neuron fires after the input exceeds some threshold,
propagating signal to the next layer of neurons

A computational “model” of a neuron (1)

Bias Weight

ap=1 , aj=g(in;)

Wo,

Input Input Activati
Links Function Fungdtion

(activation, threshold, Activation

Weighted combination Non-linear function Output/ Input to next layer

transfer)

A computational “model” of a neuron (2)

Bias Weight

(I“ = 1

Input
Links

n
’I:’I’I,j: E wi,jai
1=0

Input Activation

Function Fundtion COutput

g:R—>R

Output
Links

a; = g(inj) =g (

E W; ;04

1=0

Activation functions

Introduce some non-linearity (otherwise, same as linear regression)
e Some popular choices:

Logic
circuits

de Yanh ',

I 6()«) =io else

(e
o

| f K20

——

|

\|¢X7\

%Q‘) -gx o -1X&\

~| |P K(‘l

__/

RelU:

% 1® %0
J/ g :io Qlse

|

(

loaisﬁu% %O‘ -

Tanh - - ¢ -
— TEn
—
Softplus W= | &
j/ gAY = log (14 <)
|

As “logic circuits” (1)

Let X={0,1}2, Y={0,1}, g(a) = 1 ifa>0 else O

Wy, = -0.5
AND: W, = 0.3
W,, = 0.3

W01

Y1

“Bias” weight

As “logic circuits” (2) X W .
A2 Y1
Let X={0,1}2, Y={0,1}, g(@) =1ifa>0else 0 * —W,
Wy, “Bias” weight
W,, =-0.3
. W., = 0.5
OR 11 . () O
W21 = 0.5 \\\
XZ\\ y=1
NN
RN
y=0 \\\X1

As “logic circuits” (3)

Let X={0,1}2, Y={0,1}, g(a) = 1 ifa>0 else O

Woq =

XOR: Wiy =

W, =

A single neuron is equivalent to picking a hyperplane.
Can’t correctly label data that is not linearly separable.

A2 y
X, — Wy N\ 1

W4 “Bias” weight

e
« O

As “logic circuits” (4)

Let X={0,1}2, Y={0,1}, g(a) = 1 ifa>0 else O

Vo
XOR V, = 0.5 S
. 11~ Y. N
v QO
V,, =-1.25 AN .
X2 N \\
Vs = 0.5 N
31— L. N \
N\ N\
N N\
S () A >
\l/ ~ <
In general, we can build any logic circuit with a y=0 t Xy

network of neurons, as long as we have enough units
in each layer.

Feed-forward networks

e A composition of multiple activation functions
e No “internal state”, just an input->output mapping

hix) = Q(Z wl) g wl=b . g(...

X, ~ : @ (3 J
CAS
|
X4 :
|
| |
| |
| | |
| | |
X —(g | g — |
N =~ .

Network Depth

Input Layer R Output Layer

The perceptron

e Asingle “layer”, one unit per output
Simplified problem domain

Let
X4) X ={0,1}0
{9 Y Y={0,1)

X9

g(@)=1ifa>0else0

Xp @ Yk

How can we learn the weights?

The perceptron learning rule

Loop:

Pick (x(, y®) from the training data X2
Foreach w;;: @

If the weights stop changing, done! Xp \9/

Y1

Yo

Yk

wik — wik+a- (g —h(xD)) -zl
The perceptron learning rule - notes

e |If the predicted output and the actual output agree, weight doesn’t change
((y-h(x)) = 0 © don’t change weight)

e |If predicted output is 0 and actual output is 1, weight wasn'’t large enough to get past
threshold: increase weight
((y-h(x)) > 0 = increase weight)

e |If predicted output is 1 and actual output is 0, weight was too large, decrease
((y-h(x)) < 0 = decrease weight)

e Learning rate a controls how much to change weight based on a single example (if
training data contains noise, make small changes)

e |f dataset is linearly separable, the perceptron rule is guaranteed to fit the training data
in a finite number of steps

More complex networks

e Notice, that for a single layer, the weights
for different outputs do not interact:
training can happen in parallel

i /é\ Y1
X2
g Y2

For different activation functions, use
Stochastic Gradient Descent

For multiple layers, weights do interact...

QTL A\ O
0 -0 o

New algorithm: Backprop

Y1

Yo

T

l

Stochastic Gradient Descent for NNs

Like Gradient Descent, except we only use a Notes:

single point instead of an entire dataset
e We want to move to a minimum of the

Loop: error, so we move down the gradient with

Pick (x(@, y®) from the training data the (-1)

Foreach w,;: e Gradient Descent, like hill-climbing can

o @ @) get stuck in local optima. Empirically,
(] (2
Wy k <~ Wik + (—1)0‘7&0 o (w, %™, y™) Stochastic Gradient Descent seems to be
If the weights stop changing, done! able to avoid getting stuck.
Where
1

E(w’xay) = §(y - h(X))2

Gradient of the error function, single layer (1)
OF 0 1

. - . 2
0
Chain rule = (yk — h(X)) Jw. . (yk — h(X))
J
0
Single layer = (yk — h(X)) S . (yk — ak)
.7)
0 .
Definition of a, = (yk — h(X)) - (yk — Q(an))
ow;

Gradient of the error function, single layer (2)

OF 0 .
Chain rule — (yk — h(X))(—l)g/(znk) 8137,]{: an g'() = deriv. of g()
, 0
Definition of in, | = (Yk — h(x))(—l)g'(mk) &wj,k ZL: Wi k * T

= (yx — h(x))(=1)g'(ink) - z;

Comparing Perceptron rule with SGD (single layer)

Perceptron rule
Wj,k < Wik + Q- (yz(:) — h(x")) - :vﬁ-“

e Guaranteed global convergence (linearly
separable data)
Requires step threshold function
Perceptrons (single layers) only

SGD (single layer)

Wjk < Wik + - (y;(f) — ak)g’(ink)wy)

e Probabilistic convergence in the limit
e Works with any g() that has a derivative
e Generalizes to more than one layer

How can we generalize this to more than one
layer?

“The Backward Propagation of Error”

Backprop Gradient
S {9 —O_
g (9) (9—9)
@) @) —
Activations '

The derivative of the error function for a weight can be written in terms of

e The derivative of the threshold function (g’)
e The input from the previous layer (activations)
e The error from the following layer (error)

Weight updates for multilayer networks

Wik < Wik +a-aj - Ag

where for the output layer

Ay = (yx — ak) - g'(ink)

and for hidden layers

Delta from following layer

A =g (ing) - (wik - Ag)

k_/

Weight from j to k

Summary and preview

Wrapping up

Perceptrons: easy to train for linearly separable functions
Stochastic Gradient Descent: a variant of GD using a single training datapoint
at a time

e Backprop for training multi-layer feed-forward neural networks, has two

stages layer by layer:
o Feed signal forward, store activations
o Propagate error backwards, update weights

Next time: Deep Learning

