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Sensor uncertainty
We’ve been assuming we can tell what state 
we’re currently in with perfect accuracy. This is 
often not true! 

● Is it going to rain in the next hour? 
● Do I have allergies or a cold? 
● How much time do I have before my 

battery runs out? 

Probabilities to the rescue!  
S = {‘loc’:’A’, ‘A-clean’:True, ‘B-clean’:False} vs 
S = {‘loc-is-A’:0.5, ‘A-clean’:0.9, ‘B-clean’:0.2} 

We can ask questions like: “What’s the 
probability that both A and B are clean?”

?
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Probabilistic Inference
Represent components of state as Random 
Variables: 

Random Variables can be discrete or 
continuous 

 
The function that determines the probability 
value is called the “distribution” of that RV

How do we know the distribution? Two ways: 

Sampling by observing many times 

● Expected utility in RL 

Provided as part of the problem description 

● p(Raining) = <0.1, 0.9> 
● p(Battery > x) = e-x

p(x)

x

p(Raining=T) p(Raining=F)

0.1 0.9
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3. Additivity

Rules of Probability
1. The probability that a RV takes on some 

value is always between 0 and 1 

2. Probability of deterministic events

A B

A and B
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Interactions between Random Variables

With multiple interacting RVs, the probability distribution that includes all of them 
together is called the joint distribution 

Example: p(Cavity, Toothache, Catch) 

Facts: table sums to 1, all combinations of all RVs, one cell per “configuration”

0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Cavity

¬Cavity

Catch ¬Catch Catch ¬Catch

Toothache ¬Toothache

p(Toothache=F, Cavity=F, Catch=F) = 0.576

Notation 
p(X): distribution, function or table 
p(X=x): probability, single number
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Events & Marginalization

● An event is a setting of some subset of random variables 
● You can use the joint distribution to compute the probability of any event by 

adding up all the table entries that correspond with the given configuration 

Marginalization 

p(Cav=T) = 0.108 + 0.012+0.072+0.008 
               = 0.2 

p(Cav=T or Tooth=T) = 0.108+0.012+0.072+0.008 +0.016 + 0.064 = 0.28 

p(Cav=T and Tooth=T) = 0.108 + 0.012 = 0.12

0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Cav

¬Cav

Cat ¬Cat

Tooth ¬Tooth

Cat ¬Cat
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Conditional Probability (1)

● When one Random Variable impacts the value of another 
“If X=v, what is the probability of Y=w?”

“Conditioned variable”

Notation 
p(Y|X=v): distribution, function or table 
p(Y=w|X=v): probability, single number
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Conditional Probability (2)

Typically, an agent wants to know conditional probabilities 

Example:  
p(Cav=T | Tooth=T) = p(Cav=T and Tooth=T)/p(Tooth=T) 
                      = (0.108+0.012)/(0.108+0.012+0.016+0.064) = 0.6 
p(Cav=F|Tooth=T) = (0.016+0.064)/(0.108+0.012+0.016+0.064) = 0.4

State Evidence
0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Cav

¬Cav

Cat ¬Cat

Tooth ¬Tooth

Cat ¬Cat
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Normalization

Notice that the two probabilities summed to 1 across Cavity (not Toothache) 

In general, we don’t have to know/compute the denominator, we can “normalize”

p(Cav=T | Tooth=T) = 0.6 
p(Cav=F | Tooth=T) = 0.4
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Hidden Variables

Frequently our agent won’t have settings for all of the random variables.  

Solution? Sum them out! 

In the previous example, Catch was a hidden variable:  
p(Cav=T|Tooth=T) = 𝛼p(Cav=T,Tooth=T,Cat=T) + 𝛼p(Cav=T,Tooth=T,Cat=F)
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Example - marginalization and normalization

What’s the probability you have a cavity if you don’t have a toothache? 

p(Cav|Tooth=F) = 𝛼 p(Cav,Tooth=F) = 𝛼 ∑h={T,F} p(Cav,Tooth=F,Catch=h) 

= 𝛼[ p(Cav, Tooth=F, Cat=T) + p(Cav, Tooth=F, Cat=F)] 
= 𝛼[ <0.072, 0.144> + <0.008, 0.576>] 
= 𝛼 <0.08, 0.72> 

Must sum to 1, so 
𝛼 * (0.08+0.72) = 𝛼 * (0.8) = 1 
𝛼 = 1.25 

p(Cav|Tooth=F) = <0.1, 0.9>

0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Cav

¬Cav

Cat ¬Cat

Tooth ¬Tooth

Cat ¬Cat
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Conditioning

● Given full joint probability, agent can compute anything about the RVs! 
● Usually, agent only has access to some conditional probabilities, not their joint 

distribution 
● Can get around this by marginalizing and leveraging the definition of 

conditional probability 

Ex: How can we get p(X) (marginal) if we don’t know p(X,Y), just p(X|Y) and p(Y)?

Cond. Prob. def.

Marginalize Y
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Independence

Two random variables are independent if and only if their joint probability is the 
same as the product of their marginals 

Similarly, two random variables can be conditionally independent given a third
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Independence Example

Are Catch and Toothache independent? 

p(Catch=T, Toothache=T) = 0.124 
p(Cat=T)*p(Tooth=T)=(0.108+0.016+0.072+0.144)*(0.108+0.012+0.016+0.064) 
                               =(0.34)*(0.2) = 0.068 != 0.124 (NOT INDEPENDENT) 

What about conditioned on Cavity? 
p(Cat=T,Tooth=T|Cav=T) = 0.54 
p(Cat=T | Cav=T)*p(Tooth=T|Cav=T) = 0.9*0.6=0.54 
… also checks out for each setting of Cat, Cav, and Tooth 
(CONDITIONALLY INDEPENDENT given Cavity)

0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Cav

¬Cav

Cat ¬Cat

Tooth ¬Tooth

Cat ¬Cat
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Factoring the joint probability with independence

● Suppose we add Weather as a RV to the Cav,Cat,Tooth model, where 
whether can take on 4 values: {Sunny, Rainy, Foggy, Snowy} 

p(Cav,Tooth,Catch,Weather)               =         p(Cav,Tooth,Catch)*p(Weather)

2x2x2x4=32 cells 2x2x2 + 4=12 cells
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Bayes Rule

Additional TRUE FACT about conditional probabilities 

Follows by plugging in definition of conditional probability 

 
This generalizes to more than two RVs, and gives us the product rule 

Note: this is true for any ordering of the Xj!
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Using Bayes Rule

We can use Bayes Rule to “flip” the conditioning variable 

Example: Medical Diagnosis “What’s the probability I have the flu given I have a 
cough?” 

p(Flu|Cough=T) = 𝛼 <p(Cough=T|Flu=T) p(Flu=T), p(Cough=T|Flu=F) p(Flu=F)>

Difficult to measure Easy to measure

Easy to measure

No need  to measure 
(normalize!)
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Incorporating multiple pieces of evidence

“What’s the probability of Cavity given Catch and Toothache?” 

Applying bayes rule and normalizing: 
p(Cav | Cat, Tooth) = 𝛼 p(Tooth, Cat | Cav) p(Cav) 

But since Catch and Tooth are conditionally independent given Cavity 
p(Cav | Cat, Tooth) = 𝛼 p(Tooth | Cav) p(Cat | Cav) p(Cav) 

IF our evidence variables are conditionally independent from one another given 
the cause variable, we can significantly simplify things!
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Summary and preview

Wrapping up 

● To handle uncertain sensors, state now describes probabilities 
● The joint probability distribution contains all the information we need to 

answer any question about any subset of the random variables it describes 
● Marginalization, Normalization, and Bayes Rule are all “probability tricks” we 

can use to simplify/compute specific probabilities 

Next time 

● Detailed example: Avoid the wumpus!
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