
Introduction to Artificial Intelligence

Problem Set 1 — Coding

Instructions

Welcome to Intro to Artificial Intelligence! In this first problem set, we’ll be going over some foundational
programming skills that will be very important for the homework assignments later on in the semester. For
some students this will be a quick review, for others this material might be completely new, both cases are
fine. If this is your first time working with Python, or if you’ve seen or even used Python before but it’s
been a while, some of these concepts may seem a bit peculiar, and that’s OK. We’re spending time on some
very specific techniques and unique Python oddities now to avoid being confused by them later on during
the homework assignments. Don’t worry if you get stuck on some questions, but do

• Bring your questions to class and to office hours. Don’t wait until you get stuck on a complicated part
of a homework somewhere down the line.

• Attempt to complete as much as you can, and

• TURN IN YOUR WORK before the due date. You won’t be penalized for incomplete work,
or for errors in your code or logic, but you won’t get any credit if you don’t turn anything in. This is
true for all problem set assignments in this course.

If all of these questions seem easy and obvious, try to challenge yourself:

• See if you can write the code to answer each question in the fewest number of lines possible

• Run some experiments to see how efficient these recursive implementations are (particularly with the
last few questions)

• Try to generalize the memoizer function.

Regardless of your experience with Python you should be able to get something out of this exercise.

Questions

1. The Collatz conjecture1 is a deep mathematical question that can be explained with a fairly simply
game of arithmetic:

(a) Pick a positive integer, call it n.

(b) If n is even, divide it by 2.

(c) Otherwise, multiply it by 3 and add 1.

(d) Repeat steps 2-4 with the new number.

1https://en.wikipedia.org/wiki/Collatz_conjecture

1



The mathematical question is: “Does every starting n eventually end up at 1?” if you keep applying
the rules over and over again (notice that if you start at 1, you go to 4 then 2 and then end up right
back at 1, you’re caught in a loop). Write a function in Python which, when given any integer n, runs
the game above until 1 is reached, printing out all the numbers visited along the way. While it may
seem like the obvious answer is an iterative solution, we’re going to go with a recursive version. We’ll
see why shortly.

2. After you’ve got the basic game working, lets start really taking advantage of the fact that a computer
can do this process far quicker than we can by hand. While the numbers we visit along the way can
be interesting and aesthetically pleasing, there are other questions we could answer. Write another
function which returns (not prints) the number of steps it takes to go from n to 1. This should also
be recursive.

3. You may have wondered why we’re using recursion for these functions, rather than straightforward
loops. One reason (we’ll give another reason soon) is that practicing recursion is partly the purpose of
the exercise: understanding recursion and being comfortable implementing things recursively is going
to be very important for future homework assignments. But it is true that recursive code has some
drawbacks: notably, you can fill up the call-stack with recursive calls, which can cause your code to
crash. You’ve probably encountered this when debugging a faulty base-case, but it can happen even
when there are no logical errors in your code. One way to address this is to use memoization2. Write
a function called memoizer which takes as its arguments a function, and a storage dictionary, and
returns a new function, a “memoized” version of the function that was passed in. You can assume
that the function-to-be-memoized takes only positional arguments (no keyword args). If you’ve never
written Python functions that have variable or keyword arguments, or take functions as arguments,
you’re going to have to do a little bit of research on these features34. Once you’ve got this written,
use the memoizer to make a memoized version of your previous two functions. They should function
exactly the same, but we’ll be able to compute things much more quickly in the next few questions.

4. Next up are two functions which will find for us values for n which take the longest to get back to
1. Write max collatz steps and max collatz num which return the largest number of steps, and the
corresponding n out of all the numbers from 1 up to the passed in value. Using our memoized collatz
functions, we can now compute the maximum values for a fairly large range of numbers. Think about
whether this would have been more or less efficient with a non-recursive solution, and test out your
hypothesis by running experiments with iterative vs recursive (memoized) functions. If you’re feeling
ambitious, think about how you might take advantage of Python’s rebinding capabilities to eke out
even more efficiency.

5. Visualizing the chains or “orbits” of numbers in this process can result in some remarkable images (see
wikipedia link in the first footnote), but to make these visualizations we’d need to keep track of the
path that we took along the way. Modify (or write a new function) which builds up a graph linking
numbers to their “Collatz successor”. The Object Oriented way to do this would be to write our own
Node class, but really we don’t need to do that: we can just use Python’s built in dictionaries as our
nodes. This is a somewhat more “Pythonic” approach for when we need an object that only holds on to
data (rather than one that has useful methods), and we’ll be using it in future homework assignments,
so it’s a good idea to practice it here.

Submission

You can keep all of your code in a single python file, and upload it to Gradescope as your submission for
this assignment. If you ran additional experiments or visualizations (completely optional), put these and

2https://en.wikipedia.org/wiki/Memoization
3https://docs.python.org/3/reference/,
4https://docs.python.org/3/library/

2



any discussion in a single PDF document and include it as well. Otherwise, include any notes or discussion
as comments in your python file.

3


