
Generic Search Algorithm
and examples

CS 580
Intro to Artificial Intelligence

A

Recall
A Search Agent solves problems by

● Formulating a state space and
goal

● Searching the state space until
it has found a sequence of
actions from the initial state to
the goal

● Executing each action in turn

We know several ways of searching a
state space

● Depth First Search
● Breadth First Search
● Uniform Cost Search

A B B

A B

A B A B

A B A B A B

Search Node
data structure
We’ve looked at the state space in the
abstract as states connected by
actions, but we need some additional
bookkeeping to implement our search

● Parent node (for backtracking)
● Transition action
● Cost of shortest known path

from start to this state, g
● The actual state

A B

node=dict()
node[‘state’] = (‘A’, True, False)
node[‘parent’] = parent_node #<-another node object
node[‘action’] = ‘Clean’
node[‘g’] = parent_node[‘g’]+clean_cost

‘loc’ ‘A-clean’ ‘B-clean’

Generic Search Algorithm
Initialize ‘current’ node to start state
Initialize ‘closed’ as an empty list
Initialize ‘open’ as one of (stack, queue, priority queue)
while not(current[‘state’] is goal state):

Add current[‘state’] to closed
successors = successors of current[‘state’]
for s in successors:

if not(s.state is in closed):
Add new node for state to open

current = next node in open that’s not in closed
path = list()
while current has a parent:

Add current[‘action’] to the front of path
current = current[‘parent’]

return path

Generic Search Algorithm - notes
Can implement BFS, DFS, or UCS by picking
the right data structure for open

● DFS: stack
● BFS: queue
● UCS: priority queue, with priority being

node[‘g’]

This version is similar to the Graph-Search
algorithm (Fig 3.7) in the text, with some minor
changes

Initialize ‘current’ node to start state
Initialize ‘closed’ as an empty list
Initialize ‘open’ as one of (stack, queue, priority queue)
while not(current[‘state’] is goal state):

Add current[‘state’] to closed
successors = successors of current[‘state’]
for s in successors:

if not(s.state is in closed):
Add new node for state to open

current = next node in open
path = list()
while current has a parent:

Add current[‘action’] to the front of path
current = current[‘parent’]

return path

Romania

Romania - DFS
Current: Arad
Open: [S,T,Z]
Closed: [A]

Current: Sibiu
Open: [F,O,R,T,Z]
Closed: [A,S]

Current: Fagaras
Open: [B,O,R,T,Z]
Closed: [A,S,F]

Current: Bucharest
Open:[O,R,T,Z]
Closed: [B,A,S,F] Solution: [A->S, S->F, F->B]

Cost: 450

A

S T Z

F R

B

O

Romania - DFS (reversed alpha)
Arad
[Z,T,S]
[A]

Zerind
[O,T,S]
[A,Z]

Oradea
[S,T,S]
[A,Z,O]

Sibiu
[R,F,T,S]
[A,Z,O,S]

Rimnicu Vilcea
[P,C,F,T,S]
[A,Z,O,S,R]

Pitesti
[C,B,C,F,T,S]
[A,Z,O,S,R,P]

Craiova
[D,B,C,F,T,S]
[A,Z,O,S,R,P,C]

Drobeta
[M,B,C,F,T,S]
[A,Z,O,S,R,P,C,D]

Bucharest is
“buried”

Solution (eventually): [A->Z, Z->O, O->S, S->R, R->P, P->B]
Cost: 575

For DFS: Order of expansion can
have a big impact on number of
nodes explored, and the final path
returned!

Romania - BFS
Arad
[S,T,Z]
[A]

Sibiu
[T,Z,F,O,R]
[A,S]

Timisoara
[Z,F,O,R,L]
[A,S,T]

Zerind
[F,O,R,L,O]
[A,S,T,Z]

Fagaras
[O,R,L,O,B]
[A,S,T,Z,F]

Oradea
[R,L,O,B]
[A,S,T,Z,F,O]

Rimnicu Vilcea
[L,O,B,C,P]
[A,S,T,Z,F,O,R]

Lugoj
[O,B,C,P,M]
[A,S,T,Z,F,O,R,L]

Bucharest
[C,P,M,G,U]
[A,S,T,Z,F,R,L,O,B] Solution: [A->S, S->F, F->B]

Cost: 450

Romania - UCS
Arad (0)
[Z(75), T(118), S(140)]
[A]

Zerind (75)
[T(118), S(140), O(146)]
[A,Z]

Timisoara (118)
[S(140), O(146), L(229)]
[A,Z,T]

Sibiu (140)
[O(146),R(220),L(229),F(239),O(291)]
[A,Z,T,S]

Oradea (146)
[R(220),L(229),F(239),O(291)]
[A,Z,T,S,O]

A

Z TS

O LR FO

Romania - UCS
Rimnicu Vilcea (220)
[L(229),F(239),O(291),P(317),C(366)]
[A,Z,T,S,O,R]

Lugoj(229)
[F(239),O(291),M(299),P(317),C(366)]
[A,Z,T,S,O,R,L]

Fagaras(239)
[O(291),M(299),P(317),C(366),B(450)]
[A,Z,T,S,O,R,L,F]

Mehadia(299)
[P(317),C(366),D(374),B(450)]
[A,Z,T,S,O,R,L,F,M]

Pitesti(317)
[C(366),D(374),B(418),B(450),C(455)]
[A,Z,T,S,O,R,L,F,M,P]

A

Z TS

O LR F

P C MB

DB C

O

Romania - UCS
Craiova(366)
[D(374),B(418),B(450),C(455),D(486)]
[A,Z,T,S,O,R,L,F,M,P,C]

Drobeta(374)
[B(418),B(450),C(455),D(486)]
[A,Z,T,S,O,R,L,F,M,P,C,D]

Bucharest(418)
[B(450),C(455),D(486)]
[A,Z,T,S,O,R,L,F,M,P,C,D]

Solution: [A->S, S->R, R->P, P->B]
Cost: 418

A

Z TS

O LR F

P C MB

DB C

O

Comparing
DFS,BFS, and UCS

● DFS was highly dependent on
the order that child nodes were
explored

● BFS took more iterations than
DFS, but less than UCS and
DFS-reverse-alpha

● DFS and BFS both found the
same (sub-optimal solution)

● UCS found the best solution,
but took as long as
DFS-reverse-alpha

How can we improve?

Uninformed vs Informed Search
Uninformed Search

● Does not use any domain specific knowledge
● Only looks at edges and edge costs, the problem is completely abstract
● We can find the optimal path (UCS) but it might take a long time to compute

Informed Search

● Formally represent domain knowledge that can guide the search in “good”
directions

● Leverage the optimality and completeness guarantees from UCS if possible

A* Search preview
Something like UCS, but with a
little “hint” about the right
direction to go

Priority queue with priority
f(s) = g(s)+h(s)

h(s): “Heuristic” function, that
estimates the cost-to-go from s

Note: h(s) should be easier to
compute than solving the original
problem!

Summary and preview
Wrapping up

● We can implement DFS, BFS, and UCS with a single algorithm, and choose
the behavior we want by picking the appropriate data structure

● Examples of applying search

For next time

● A* Search
● Admissibility, Consistency, and Optimality

