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Representing independence
It’s difficult to tell what the independence 
relationships are just by looking at the joint 
probability distribution

Intuitively, independence is related to cause and 
effect relationships: the reason you have a 
toothache, or the dentist tool catches is because 
you have a cavity

One natural way to represent these relationships 
is with a directed acyclic graph
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Bayes Nets (1)
Nodes: random variables

Directed edges: from cause to effect

Conditional Probability Table (CPT)
For discrete RV’s we can represent the 
conditional probability as a table

Toothache

Cavity

Catch

p(Cat|Cav) p(￢Cat|Cav)

Cav=T 0.9 0.1

Cav=F 0.6 0.4

p(Tth|Cav) p(￢Tth|Cav)

Cav=T 0.6 0.4

Cav=F 0.1 0.9

p(Cav) p(￢Cav)

0.2 0.8

IF the graph accurately represents the independence structure, 
nodes are independent of their siblings given their immediate 
parents:
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p(Starts|Gas,Temp) p(￢Starts|Gas,Temp)

Gas=T, Temp=T 0.9 0.1

Gas=T, Temp=F 0.8 0.2

Gas=F, Temp=T 0.5 0.5

Gas=F,Temp=F 0.3 0.7

Bayes Nets (2)
Nodes can have more than one parent, or none

● CPT  includes all parents
● Nodes without parents: marginals

Starts

Gas Temp

“Car has fuel” “Weather is warm”

“Car starts”

IF the graph accurately represents the independence 
structure, parents are independent if not conditioned on 
common children

BUT if conditioned on a common child, parents are no longer 
independent (knowing effect influences the probability of both 
causes) 4



Bayes Nets (3)
Nodes can have “grandparents” (chains)

IF the graph accurately represents the independence structure, nodes are 
independent of their grandparents given their immediate parents

Starts

Gas

Temp

“Car has fuel”

“Weather is warm”
“Car starts”

Late

“Late to campus”
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Independence in Bayes Nets
IF the graph accurately represents the independence structure, we can factor the 
joint probability into a convenient form

In words: nodes are conditionally independent of their ancestors and siblings 
(non-descendents) given their parents
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Cause and Effect
If you know the cause and effect relationships for your problem, it’s easy to build a 
Bayes Net. Can you also infer cause and effect relationship from a graph? No!

This also shows that a graph for a given set of RVs is not necessarily unique
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C D

A B

C D
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Using Bayes Nets - Example (1)
Setup

You are on vacation, and you’ve 
asked your neighbors to keep an eye 
on your house while you are away. 
They’ll call you if your house alarm 
goes off.

Your alarm system could be triggered 
because of an actual burglar, or 
because a thunderstorm sets it off.
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Using Bayes Nets - Example (2)
What’s the probability that

● Both neighbors call
● The alarm goes off
● There is no burglar
● There is no storm

p(j,m,a,¬b,¬t) =
p(j|a) p(m|a) p(a|¬b,¬t) p(¬b) p(¬t) =
(.9) (.7) (.001) (.999) (.998) = 0.00062

Joint probability table: 2^5=32 cells

CPT factorization: 20 cells

9



Using Bayes Nets - Example (3)
What’s the probability that there is a 
burglar if both John and Mary call?

In general, there’s a 4 step process to 
solve any query about a Bayes Net:

1. Write the query as a statement 
about probabilities

2. Rewrite statement in terms of 
the joint probability distribution

3. Factor the joint probability using 
Bayes Net independencies

4. Simplify, and plug in numbers 
from CPTs
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Using Bayes Nets - Example (4)
1. Write the query as a statement 

about probabilities

“What’s the probability that there is a 
burglar if both John and Mary call?”

Abbreviated
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Using Bayes Nets - Example (5)
2. Rewrite in joint probability form

Using

● definition of conditional 
probability and normalization

● marginalization over 
Thunderstorm and Alarm
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Using Bayes Nets - Example (6)
3. Factor joint probability using Bayes Net

Th B

A

J M
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Using Bayes Nets - Example (7)
4. Simplify and plug in CPTs

p(b|j,m) = 𝛼 (0.001)*[ 
(0.002)*
[(0.9)(0.7)(0.95) + (0.05)(0.01)(0.05)]+
(0.998)*
[(0.9)(0.7)(0.94) + (0.05)(0.01)(0.06)]]
= 𝛼 (0.00059224259)

To find alpha, repeat for p(¬b|j,m)
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Naive Bayes Classifier (1)
We can use the Bayes Net framework to 
introduce a simple and effective technique from 
Machine Learning known as the 
Naive Bayes Classifier

Task: label an email as spam or notspam

How can we train an agent to do this for us by 
giving it lots and lots of examples of spam and 
notspam emails?

Not Spam
Email

Inbox

Trash

Spam
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Naive Bayes Classifier (2)
For any email, let’s associate a set of binary 
RVs that correspond with “features” of the email 
that we can easily measure and we think 
correspond with whether an email is spam or not

Example Features
X1 = Contains “CASH!”
X2 = From an address in my contact list
X3 = Contains no text (only images)
…

We’ll manually label some training data as spam 
and notspam

…. $$$ .... CASH ... 
CALL NOW … 
FAST … WIRE 
TRANSFER … 

Spam
X1=True
X2=False
X3=True
… 
XD=False

…. JOURNAL .... 
CALL FOR 
SUBMISSIONS ... 
OPEN NOW … 
CONFERENCE  … 

Notspam
X1=False
X2=True
X3=True
… 
XD=False
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Naive Bayes Classifier (3)
Now let’s make a big assumption: Each Xi is 
independent of the other Xj given whether the 
email is spam or not.

If this were true, we could factor the probability 
that a given email was spam or not!

Spam

X1 X2 XD
…
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Estimating probabilities from data
Class label probability

“Feature” conditional probability

18



Classifying spam

???

X1=True
X2=False
X3=True
… 
XD=False

Inbox

Trash
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Naive Bayes notes
Properties

● Works incredibly (as a classifier) well in practice, even though the Naive 
Bayes assumption is often completely wrong

● Is a generative model: can actually “produce” spam emails by sampling 
according to the distribution

● Generalizes to non-binary features and classes

Implementation

● Need to be careful about picking the features (zero counts) and computing 
product with many terms (log space)
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Summary and preview
Wrapping up

● We can use directed graphs to capture our intuitive notion of independence
● This also allows us to break a single large joint probability table into several 

smaller conditional probability tables (CPTs)
● This factored representation lets us answer any question we would need to 

use the joint probability table for, potentially saving on computation too

Next time

● Probabilities in time (Filtering and Smoothing)
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