
Markov Decision Processes
CS 580

Intro to Artificial Intelligence



Stochastic actions
In search, we usually assumed that the problem 
was deterministic. Taking an action in a 
particular state always resulted in the same 
successor state.

In the real world, this usually isn’t true, but we 
can often assign a probability that an action will 
have some result

In And-Or search, we developed a 
contingency plan (complex!)

Now we’ll look at an alternative: policy

A B

“Right”

A B A B

p = 0.1 p = 0.9



Example environment
Robot can be in any of the non-wall cells (x,y)

Actions 
Up, Down, Left, Right. (moving into wall or out of 
bounds → stays put)

Goal
Low battery, get to the charger (4,3)! Avoid 
falling down the stairs (4,2)!

Non-deterministic wrinkle
Actions have a chance of moving the wrong way

Charger

Wall Stairs

1 2 3 4

1

2

3



Transition Model
Let’s be precise about “chance of moving the 
wrong way”

There is an 80% chance of moving in the 
intended direction. The remaining 20% is split 
evenly between the two orthogonal directions

Notation
Probability of transitioning from s to s’ with 
action a

“Right”

p=0.8

“Up”

“Down”

p=0.1

p=0.1



Transition Model - Example (1)

Charger

Wall Stairs

1 2 3 4

1

2

3

“Up” in (3,1)→
(3,2) w/ p=0.8
(2,1) w/ p=0.1
(4,1) w/ p=0.1



Transition Model - Example (2)

Charger

Wall Stairs

1 2 3 4

1

2

3

“Up” in (2,1)→
(2,1) w/ p=0.8
(1,1) w/ p=0.1
(3,1) w/ p=0.1



Transition Model - Example (3)

Charger

Wall Stairs

1 2 3 4

1

2

3

“Up” in (1,3)→
(1,3) w/ p=0.9
(2,3) w/ p=0.1



Planning solution
What’s the planning solution for getting to the 
goal?

Deterministic version:
[U,U,R,R,R] or [R,R,U,U,R]

Probability of success?
(0.8)*(0.8)*(0.8)*(0.8)*(0.8) = 32%

Probability of success (by accident)?
(0.1)*(0.1)*(0.1)*(0.1)*(0.8) = 0.008%

Size of the contingency plan?
5 Layers, with cycles for almost every action!

Charger

Wall Stairs

1 2 3 4

1

2

3



Policy
What’s an effective policy for getting to the 
charger?

A policy is a mapping from states to actions

The “best” policy is going to depend on our 
performance measure which we can encode 
as a reward function

𝜋=Right

𝜋=Up

𝜋=Up

𝜋=Right 𝜋=Right Charger

Wall 𝜋=Up Stairs

𝜋=Right 𝜋=Up 𝜋=Left

1 2 3 4

1

2

3



Reward
The reward function is a mapping from states 
to real numbers that gives a “score” for being in 
that state

(Notation aside: sometimes reward is given as a 
function of taking a specific action in a state. 
These are mathematically equivalent)

R=0

R=0

R=0 R=0 R=+1

Wall R=0 R=-1

R=0 R=0 R=0

1 2 3 4

1

2

3



Best policy, conservative version

+1

Wall -1

1 2 3 4

1

2

3

Keep R(s) of red and 
green fixed

For every other state
-0.0221 < R(s) < 0



Best policy, speedy version

+1

Wall -1

1 2 3 4

1

2

3

Keep R(s) of red and 
green fixed

For every other state
-0.4278 < R(s) < -0.085



Finding the best policy
How can we compute the best policy given R 
and T?

High level
Use the probabilities in the transition model 
and the values of the reward to figure out the 
utility of each state. The optimal policy just 
greedily moves to the state with highest utility!

What is utility?

Expected long-term discounted reward

?

?

? ? Charger

Wall ? Stairs

? ? ?

1 2 3 4

1

2

3



Defining Utility, attempt 1
How should we define utility? Let’s try a few different approaches

Additive reward finite horizon

Problem
How do we pick T?

Sequence of visited states

Initial state



Defining Utility, attempt 2
Additive reward infinite horizon

Problem
Unbounded sum!



Defining Utility, attempt 3
Additive reward infinite horizon, discount factor

Problem
st are random variables!



Defining Utility, attempt 4
Expected discounted long-term reward

(Note, equation 17.2 in the text)

✔



What’s so Markov about Markov Decision Processes
In order to decompose the utility in a useful way, we need to assert that our state 
space has the Markov property:

This says is that the sequence of states that brought the agent to st doesn’t 
matter for determining what the next state st+1 will be. All that matters is the 
immediate previous state st. This in hand, we can write the optimal policy as



The Bellman equation
How do we compute U𝜋*(s) in the first place? There’s an equation!

Notice that although this is looks like a circular definition, it’s actually just 
recursive. We can solve this with a kind of dynamic programming, or maybe even 
with linear algebra.

Where did this equation come from? Next time



Summary and preview
Wrapping up

● MDPs are a framework for thinking about making decisions when actions 
have uncertain outcomes

● A policy is a mapping from any state to the “best” action for that state
● Utility is the long-term expected discounted reward of being in a particular 

state

Next time

● Bellman equation proof, Value Iteration, Policy Iteration


