A* search

CS 580
Intro to Artificial Intelligence



Incorporating Domain Knowledge

We need a formal way to introduce our
knowledge about the problem to our agent

e “Distance by car is at least as much as
the straight line distance”

e “Acompleted Sudoku puzzle has to fill in
all the empty squares”

e “ATSP solution has to visit each node”

We can encode each of these as a function that
maps states to approximately remaining path
cost to the goal.

Heuristic
h(s) := approximate cost to goal

Romania with step costs in km

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366



Attempt 1: Greedy Best-first Search

UCS, except use h instead of g as the priority.

[F(176), R(193)]
[S]

[B(0), R(193)]
[S.F]

Returned path:
S->F->B (cost: 310)

Optimal path:
S->R->P->B (cost 278)

State h(State)
Sibiu 99 Fagaras Bucharest 0
Fagaras 176
Rimnicu Vilcea

Pitesti 100
Rimnicu 193
Vilcea

Sibiu 253

Our heuristic might not be accurate; we H&S§" st
to keep track of the actual cost as we go.




A* Search

Define a new function for priority
f(n) = h(n) + g(n)
The function f is an estimate of the “cheapest” solution that passes through n.

A* search is exactly the same as UCS, except using f(n) instead of g(n) for the
priority.

Result: as long as h obeys some simple properties, we can prove that A* search
returns the optimal result!



Simple A* example

Sibiu 99 Fagaras

[R(273), F(275)]
[S]

[F(275), P(277)]
[S.R]

[P(277), B(310)]
[S,R,F]

[B(278), B(310)]
[S.R,F,P] \

Returned Solution:
[S->R, R->P, P->B]

Rimnicu Vilcea

Bucharest

Note: we add B first from F, but we
don’t expand B until after P. This is
why we need to be careful about
when we stop searching

State h(State)
Bucharest 0
Fagaras 176
Pitesti 100
Rimnicu 193
Vilcea

Sibiu 253




Admissibility - Don’t overestimate

Let’s define the “true cost to go” as h*

(G,, := the closest goal to n

h*(n) := true cost from n to G,

We say a heuristic is admissible if it never overestimates

h(n) < h*(n), Vn
Notice: UCS is A* with h(n) = 0 (null heuristic)



®
. . _— *
Admissibility - examples O —
Which of these are admissible heuristics?
Vacuum world:
h(n) = “number of cells that are not marked clean” |
I
Romania: : —————————————
h(n) = “Straight Line Distance to Bucharest” ‘
Pac-Man (eating all the pellets):

—

h(n) = “Sum of the Manhattan distance to remaining pellets”



Admissibility - Pac-Man

Moving towards one pellet may put you closer to another pellet!



c(n,a,n’)
>

(n——(
h(n) < c(n,a,n’) + h(n')

N AT h |
Vn,Va,Vn' (n) h(n')

Consistency is important for ensuring that we A B
don’t have to backtrack to handle shortcuts as
we will soon see

Consistency - the triangle inequality

Any consistent heuristic is also admissible, but
not all admissible heuristics are consistent.

C
AC <=AB+BC



A* optimality - proof sketch (1)

First, note that the sequence of f(n.) values along any path (S, n,, n,, ..., n ) is
non-decreasing

f(ni) = g(n;) + h(n;) (definition)
g(n;) + c(ni, ai,nit1) + h(niv1) (consistency)
g(nit1) + h(niy1) = f(nit1) (definition)

IA



A* optimality - proof sketch (2)

1. Call the optimal path from the start to the goal p*

2. Assume that A* returns a sub-optimal path (p’ > p*) as the solution

3. In order for A* to return p’ as the solution, it must reach and expand the goal
through p’ first.

4. Since A* expands nodes by f() priority ordering, the last leg of p’ must have
been at the front of the priority queue

5. This means f(p’) < f(every other sub-path found so far) (abuse of notation)

6. But by admissibility and consistency, every sub-path of p° must have f() values
less than the shortest path. Contradiction!



A* properties

With a consistent heuristic, the following is true about A* (Where C”* is the path
cost of the optimal solution)

A* expands all nodes with f(n)<C*

A* may expand some nodes with f(n) = C*

A* will not expand any nodes with f(n) > C*

A* is complete if all step costs are positive and the branching factor is finite
A* is optimally efficient among algorithms that expand all nodes with f(n)<C*

So, is A* with consistent heuristics the answer? Why not always use h(n)=07?



Effect of the heuristic on explored states

h(n) “shapes” the search towards the best solution.




Heuristic design - preview

Sometimes, admissible/consistent heuristics just expand too many states

We can still perform A* with an inadmissible heuristic, we just can’t guarantee
optimality anymore

Not all admissible/consistent heuristics are created equal: Making a good choice
for the heuristic has strong implications for the running time and memory usage,
because it impacts the effective branching factor.



Summary and preview

Wrapping up

A* is like UCS, except using f(n) = g(n)+h(n) for the priority

In order for A* to be optimal, we need h(n) to have certain properties:
Admissibility: never over estimates true cost to goal

Consistency: h(n) <= c(n,a,n’)+h(n’) (triangle inequality)

The choice of the heuristic has a big impact on performance

Next time

e Full Romania example
e Dealing with inconsistent heuristics
e Heuristic design techniques



