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Unsupervised vs Supervised
Supervised Learning
Given data with labels (inputs and outputs), find 
mapping from inputs to outputs

Unsupervised Learning
Given data without labels (inputs), find 
“structure” in the data

What’s structure?

Types of structure

Distribution 
Find a probability distribution that describes 
the likelihood of any x: p(x|𝜃) (compare with 
MLE/MAP: p(y|x,𝜃) )

Similarity
Find a function that describes the “distance” 
between pairs of points x, x’ (SVM, kNN, …)

Summarization
Find a compact representation of the data 
(compression?): partition the data into groups or 
clusters
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Clustering graphically
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Given:

1. Data
2. Similarity/Distance function d(x(i),x(j))

Output: a partition function Pd

Clustering

Single cluster, 
Pd(x) = 1 ∀ x

Ignores similarity

Cluster for each x,
Pd(x) = x

Doesn’t summarize

Want to find a happy medium
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Algorithm: Single Linkage Clustering
Init: put each x(i) into its own cluster

Loop:

1. Compute Inter-Cluster Distance between 
all clusters

2. Merge the two clusters with minimum ICD
3. Stop after (N-k) iterations to generate k 

clusters

ICD
The minimum distance between any two points 
in each cluster:

Merging Clusters

Delete ci and cj. Add ci union cj.
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SLC example

Each iteration is a different “cut” 
through the dendrogram
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SLC notes
● SLC has a finite number of possible steps (1 to N-1)
● Start with Pd(x) = x (not a summary)
● End with Pd(x) = 1 (ignores similarity)
● Choosing the number of clusters == trading off the two ends of the spectrum
● Alternative choices for ICD

○ Mean over all pairwise distances
○ Median

● Running time:
○ Compare N points to N points at most N times: O(N3)
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SLC Pitfalls

For k=2 we 
would like to 
see

But SLC will 
produce

SLC is greedy!

Can’t re-assign clusters in 
later iterations

Time for a new algorithm
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Algorithm: k-means clustering
Init: pick k “centers” at random

Loop:

1. Assign each x(i) to the nearest center
2. Recompute centers by averaging all the 

points assigned to it
3. Stop when the center assignments no 

longer change

Center i at iteration t: 

Partition for x at time t:

Points assigned to center i at time t:

Assign x(i) to nearest center

Recompute centers
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k-means example

Random init: pick from x(i)
Once the assignments don’t 
change, centers stop moving and 
converged
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2-step iteration

At each iteration, (2) moves the centers to minimize distance from each point to its 
assigned cluster, and (1) assigns points to the cluster with minimal distance.

This is a form of local optimization 

(2)

(1)

k-means in Euclidean space
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k-means as local optimization
Fitness/cost:

Parameters:

Neighborhood:

Step (1) can only improve fitness (argmin over 
possible assignments)

Step (2) can only improve fitness (the average 
has the minimum sum squared distance

So at each iteration, k-means moves towards 
the neighbor with the best fitness and stops after 
hitting a local maximum!
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k-means properties
● Will k-means always converge? Yes!

○ Finite number of data points → finite number of partitions
○ Each partition exactly defines a center
○ Steps (1) and (2) never decrease fitness
○ As long as ties are broken consistently, will never revisit previous centers/partitions, must 

stop eventually

● How many configurations can there be? O(kN) (permutation of points to 
clusters)

● In practice converges much faster than exponential
○ Never visit most configurations
○ Distance is a very strong constraint (triangle inequality, symmetry)

● Each iteration takes polynomial time: O(k*N)
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k-means and local optima

● Since k-means is a local optimization, it can get stuck in local optima.
● Solution: random restarts
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Consistency
Decreasing within-cluster distance and 
increasing between-cluster distance does not 
change clustering

Clustering algorithm properties
Richness
For any assignment of objects to clusters, there 
exists some distance function such that the 
algorithm returns that clustering

Scale Invariance
Scaling distances by a positive value does not 
change the cluster assignment
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An impossibility result
No clustering algorithm can simultaneously 
achieve richness, scale invariance, and 
consistency (Kleinberg, 2003)

An example with SLC
The partition is determined by the stopping 
criteria. Here’s three different versions.

1. Stop when N/2 clusters are created
Scale Invariance? Yes.
Consistency? Yes.
Richness? No (number of partitions is 
fixed)

2. Stop when minimum ICD is above some 
fixed threshold 𝜃
Richness? Yes.
Consistency? Yes.
Scale Invariance? No (scale determines 
partitions)

3. Stop when minimum ICD is greater than 
some fraction of the diameter of the 
points
Richness? Yes.
Scale Invariance? Yes.
Consistency? No (increasing between 
cluster distance changes diameter) 
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Summary and preview
Wrapping up

● Clustering: grouping points together based on similarity
● Single Linkage Clustering: greedily merge closest clusters
● k-Means: alternate between assigning and computing cluster centers

○ Can be thought of as local optimization
○ Will converge in a finite number of steps
○ May need random restarts to get out of local optima

Next time

● Soft cluster assignment with probabilities and Expectation Maximization
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