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MDP-based agent sketch

The techniques we’ve discussed so far are offline: Policy is computed from 
transition function, reward function before the agent takes any actions

Requires transition function (O(|S|2|A|) memory), reward function are known

How can we remove these requirements?

def MDP_agent(T,R,gamma,states,actions):
Utility = Value_Iteration(T,R,gamma,states,actions)
pi = best_policy(Utility)
while s_cur.isTerminal()==False:

s_cur = sense_state()
a = pi[s_cur]
do_action(a)



Reinforcement Learning agent
Reinforcement Learning

● Use the same utility framework 
● Don’t require transition or reward functions
● Learn policy by interacting with the 

environment

Surprisingly, this works quite well, and isn’t any 
more complicated to implement!

Key idea is that interactions with the 
environment are samples from the transition 
and reward functions

s1 s4

s2 s3

s1 s4

s2 s3

“Right”

Receive reward: 1.0

Experience Tuple
(s, a, s’, r)



Two different ways of expressing Utility
Value Iteration

Long-term expected discounted reward of being 
in state s and following policy 𝜋

Optimal policy in state s

Reinforcement Learning

Long-term expected discounted reward of being 
in state s, taking action a, and then following 
policy 𝜋

Optimal policy in state s



Relating Q𝜋*(s,a) and U𝜋*(s)
U𝜋*(s) and Q𝜋*(s,a) are just two different ways of expressing the same utility. U𝜋*(s) 
was useful for Value/Policy Iteration, but for RL methods, Q𝜋*(s,a) will be easier to 
work with.

We can relate the two ways of writing utility in the following way



What if R is not “per state”?
By the same math (just “off by one” in the sums), we can have our reward function 
be in terms of “taking an action in a state”

Important for project!



Model-based and model-free RL
Model Based RL

Interacting with the environment produces 
samples of the transition function and the 
reward function.

Use these samples to build explicit models of 
these functions, then use VI/PI to solve the MDP

p(s’|s,a) = (# times doing “a” in s led to s’)/
(# times did “a” in s)

R(s) = average reward received in s

Model Free RL

Interacting with the environment produces 
samples of the transition function and the 
reward function.

We only care about the transition function and 
reward function because they let us compute 
utility and from that policy

Directly compute optimal policy from 
samples

Method we will focus on: Q-learning



RL-based agent sketch

An RL agent starts with some initial estimate of the utility, then iteratively improves 
this estimate through experience samples gathered by interacting with the 
environment.

How do we update Q(s,a) using these samples?

def RL_agent(gamma,actions,init_Q):
cur_state = sense_state()
cur_Q = init_Q
while cur_state.isTerminal() == False:

a = argmax(cur_Q(cur_state))
new_state, reward = do_action(a)
experience_sample = (cur_state,a,new_state,reward)
cur_Q = update(cur_Q,experience_sample)
cur_state = new_state



Updating Q from samples
Given an experience sample (s,a,s’,r)

Equivalently, by rearranging

So, we update Q by blending the old Q and an improved estimate given the 
sample!

Where did these equations come from? Bellman again!



Important edge case for terminal states
The usual formulation of MDPs/RL is with no “terminal-states”, the agent goes on 
taking actions forever.

We can modify our update equations in the case where certain states stop any 
future actions by the agent (goal states, or failure states)

The idea is that if sT is terminal, the reward for states “beyond” sT is set to zero



Picking the right action

Do we always want to pick the action that maximizes our current utility estimate?

Which actions we pick influence the sequence of states we visit, which influences 
which utilities we update

We need a way to trade off “exploration” and “exploitation”

$

$$$$



Picking actions greedily
def RL_agent(gamma,actions,init_Q):

cur_state = sense_state()
cur_Q = init_Q
while cur_state.isTerminal() == False:

a = argmax(cur_Q(s))
new_state, reward = do_action(a)
experience_sample = (cur_state,a,new_state,reward)
cur_Q = update(cur_Q,experience_sample)
cur_state = new_state

Start
Medium reward
High reward

Might not find the best 
goal state. Does not 
explore environment



Picking actions randomly
def RL_agent(gamma,actions,init_Q):

cur_state = sense_state()
cur_Q = init_Q
while cur_state.isTerminal() == False:

a = rand(actions)
new_state, reward = do_action(a)
experience_sample = (cur_state,a,new_state,reward)
cur_Q = update(cur_Q,experience_sample)
cur_state = new_state

Start
Medium reward
High reward

Might never see any 
goal states! Does not 
improve performance



Picking actions 𝜀-greedy

Start
Medium reward
High reward

Balances exploring to 
find new better states 
and exploiting known 
good states

GLIE: Greedy in the Limit of Infinite Exploration
Guaranteed to converge to optimal 𝜋

def RL_agent(gamma,actions,init_Q,epsilon):
cur_state = sense_state()
cur_Q = init_Q
while cur_state.isTerminal() == False:

a = argmax(cur_Q(s)) if rand()>epsilon else rand(actions)
new_state, reward = do_action(a)
experience_sample = (cur_state,a,new_state,reward)
cur_Q = update(cur_Q,experience_sample)
cur_state = new_state



Example - stepping through Q updates (1)
𝛼=0.5, 𝛾=0.5

Experience tuples

1. (s2, Up, s1, -0.04)
2. (s1, Right, s4, 1.0)

Updates

1. Q(s2,Up) = 0.5*0.0 + 0.5*(-0.04+0.5*0.0)
= -0.02

2. Q(s1,Right) = 0.5*0.0 + 0.5*(1.0+0.5*0.0)
= 0.5

s1 s4

s2 s3

Q(s,a)←(1-𝛼)Q(s,a) + 𝛼(r+𝛾maxa’ Q(s’,a’))

Up Down Left Right

s1 0 0 0 0.5

s2 -0.02 0 0 0

s3 0 0 0 0

s4 0 0 0 0



Example - stepping through Q updates (2)
Experience tuples

3. (s2, Right, s3, -0.04)
4. (s3, Up, s2, -0.04)
5. (s2, Up, s1, -0.04)
6. (s1, Right, s4, 1.0)

Updates

3. Q(s2,Right) = 0.5*0.0 + 0.5*(-0.04+0.5*0.0)
= -0.02

4. Q(s3,Up) = 0.5*0.0 + 0.5*(-0.04+0.5*0.0)
= -0.02

s1 s4

s2 s3

Q(s,a)←(1-𝛼)Q(s,a) + 𝛼(r+𝛾maxa’ Q(s’,a’))

Up Down Left Right

s1 0 0 0 0.5 0.75

s2 -0.02 
0.085

0 0 -0.02

s3 -0.02 0 0 0

s4 0 0 0 0

5. Q(s2,Up) = 0.5*-0.02 +0.5*(-0.04+0.5*0.5)
=-0.01+0.5*0.21 = 0.085

6. Q(s1,Right) = 0.5*0.5+0.5*(1.0+0.5*0.0)
= 0.25+0.5 = 0.75



Summary and preview
Wrapping up

● Reinforcement Learning takes the tools we used for solving offline MDPs and 
adapts them for use when the transition and reward functions are not known 
ahead of time

● Q-learning is a model-free RL algorithm that can learn the optimal policy 
online

● How the action is chosen has a big impact! (GLIE, 𝜀-greedy)

Next time: adding even more uncertainty!


