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Why probabilities?
Gives us a formal way to talk about noise (Frequentist)

Gives us a formal way to talk about belief (Bayesian)

Useful probability facts/definitions:



Expected Value
Useful facts about how expectation works

Expectation is a statistical measure of the central tendency of a random variable, 
and tells us where the “middle” of the distribution of a random variable is 



Variance
Useful facts about variance

The variance is a statistical measure of deviation from the mean and gives a 
number for how “noisy” a random variable is.



The Bias-Variance tradeoff Proof (1)
Start with

End with

Where y is an arbitrary output, and x is an arbitrary input, and the expectation is 
taken with respect to the distribution of the training data

Model, trained on S

Arbitrary inputArbitrary output



The Bias-Variance tradeoff Proof (2)

We add and subtract E[h(x)], then (partially) expand out the square



The Bias-Variance tradeoff Proof (3)
Let’s take a closer look at the last term

Since y and E[h(x)] are constants, we can push the expectation inside, and the 
cross term vanishes!



The Bias-Variance tradeoff Proof (4)

So the expected loss of any hypothesis is a combination of its bias and its 
variance.

Bias is reduced by increasing complexity
Variance can be reduced by decreasing complexity



The Bias-Variance tradeoff visually

High Bias
Low Variance

Low Bias
High Variance

𝜆 = regularization



Minimizing the Expected Loss (1)
Let’s revisit how we choose the “best” hypothesis. To start, what’s the expected 
loss for an arbitrary hypothesis at a given datapoint?



Minimizing the Expected Loss (2)

No hypothesis can do better than predicting the expected value of y given x!

This makes sense if we think of the noise in the training data as being a small 
additive error



Conditional Expectation - Graphical View

h𝜃(x0)

f(x)

y

p(y|x0)



Modeling Noise Probabilistically 
Let’s assume there is a “ground truth” deterministic function which generates our 
data, and that the samples in our dataset S have some small noise.

For a model parameterized by 𝜃, we can talk about the likelihood that a fixed set 
of data was generated by that model.



Maximum Likelihood Estimation (1)
If we assume the training data is drawn I.I.D (independent and identically 
distributed), we can factor the likelihood

Which h maximizes the likelihood?

Maximizing the likelihood is the same thing as minimizing the negative 
log-likelihood (NLL)



Maximum Likelihood Estimation (2)
Putting it together in the case of Gaussian noise



Maximum Likelihood Estimation
The MLE estimate also minimizes the sum of squared errors!

Notes:

● We made no assumption about the hypothesis class, just the distribution of 
errors (zero mean normal)

● Minimizing the sum of squared errors is equivalent to assuming that the data 
has Gaussian distributed noise



Summary and preview
Wrapping up

● Probabilities let us formalize our assumptions about noise and loss functions
● The Bias-Variance tradeoff shows us how complexity, bias, and variance are 

related
● Regression can be thought of as estimating the conditional expectation
● Maximum Likelihood Estimation under the assumption of Gaussian noise and 

IID data is equivalent to minimizing the sum of squared errors

Next time

● Moving from Regression to Classification


