
Introducing Stochasticity
CS 580

Intro to Artificial Intelligence

Games of Chance
Plenty of games include elements of
randomness

● Poker, Blackjack, Solitaire (shuffling)
● Backgammon, Monopoly (dice)
● Roulette, Pachinko, Slots (mechanical)

We can still use search, if we modify our search
tree to include probabilities with edges

For adversarial games, we can introduce
another player, “Chance”, and use a slightly
modified version of Minimax

Expectiminimax
The “Expectiminimax” value is the same as Minimax except that for chance
nodes we take the expected value of all the children

We end up with a version of adversarial search that uses this instead of
Minimax-Value.

Stochastic Actions
In the single-agent case, instead of having a
“Chance” player, we can model actions as
having non-deterministic outcomes

Deterministic actions
Result(s,a) = s’

Stochastic actions
Result(s,a) = {s1,s2,...,sk}

This type of representation is called an “And-Or
search tree”

A B

“Clean”

A B A B

Search Tree

Solutions for And-Or search trees (no cycles)
As long as there are no cycles, we can still do
search!

The result of searching an And-Or tree is no
longer a sequence of actions, but a
contingency plan:

[Clean, if S=5 then [Right, Clean] else [Left]]

An acyclic contingency plan has a nested set of
sub-plans for each possible outcome, and can
also be represented as a tree

Clean

Right

Clean

Left

“Plan Tree”

One version of And-Or Search

def or_search(state, prob, path):
if prob.goal_test(state):

return empty plan
if state in path:

return failure #cycle
for action in prob.acts(state):

S = prob.result(state,action)
np = [state,]+path
plan = and_search(S, prob, np)
if plan != failure:

return [action,]+plan
return failure

def and_or_search(prob):
or_search(prob.initstate,prob,[])

def and_search(states, prob, path):
plans = list()
for s in states:

subplan=or_search(s,prob,path)
if subplan == failure:

return failure
plans.append(subplan)

return plans

Like DFS, but with a base-case for cycles, and
alternating AND/OR layers. Compare Fig 4.11

Solutions for And-Or search trees (with cycles)
Actually, even if there are cycles, we can
sometimes find a solution.

If each outcome of a non-deterministic action
occurs eventually, we can still find a “solution”
that will… eventually… get to the goal.

To keep our solutions compact, we can
introduce labels for repeated steps

[L1: Clean, if S=5 then L1 else [Right ...]]

Clean

Right

Clean

From contingency plans to policy
These “plans” are starting to get increasingly
complex…

Instead of a sequence of actions (or a tree of
sequences), why not find a mapping from state
to action so that no matter what state we end up
in, we can immediately know what to do next?
This kind of mapping is called a policy.

Analogy
A “plan” is a list of directions
A “policy” is a map marked with arrows

High level review
Uninformed search
BFS, DFS, IDS, UCS

Informed search
A*, heuristics

Adversarial search
Minimax and alpha-beta pruning

Non-deterministic
Expectiminimax, And-Or, and contingency plans

High level preview
Before the midterm

Search
DFS, BFS, UCS, A*, Heuristics, Adversarial
Search, Expectiminimax, Contingency Plans

Stochastic actions
Markov Decision Processes, Reinforcement
Learning

After the midterm

Decisions with uncertainty
Probability, Bayes Nets, Hidden Markov Models,
Filtering

Optimization
Hill Climbing, Simulated Annealing, Evolutionary
Algorithms, Gradient Descent

Machine Learning
Linear Regression, Neural Networks, Deep
Learning, Decision Trees, Random Forests,
Clustering*

