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Soft Clustering
For some datasets, it’s useful to have a 
probabilistic or soft assignment of data points to 
clusters

In this setting, the partition function is less 
important than the size, shape, and location of 
the clusters

To compute this, we’re going to assume our data 
is generated by some non-deterministic process
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Data generation process
For K clusters, assume there are K distributions 
which generated the data. Each point is 
generated in the following way

1. Pick one of the distributions randomly
2. Sample x from that distribution

This is known as a mixture model, and when 
the underlying distributions are Gaussian, a 
Gaussian mixture model, or GMM.
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Gaussian parameters
In 1D

In higher dimensions

𝜇1 𝜇1𝜇1
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The Bayes net reveals an interesting structure. 

We want to estimate 𝜋k, 𝜇k, 𝚺k given the data

Estimating parameters (1)
What’s the MLE of the parameters of a 
Gaussian for a set of points? Easy, just the 
sample mean and covariance!

Unfortunately, it’s not a single Gaussian, it’s a 
mixture. Let Z(i) be the random variable 
representing which mixture generated x(i)

N

K

z(i)x(i)

𝜋k𝜇k𝛴k
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Estimating parameters (2)
Notice: given x, the parameters are not 
independent of one another.

BUT: if Zk were observed, 𝜋k is independent of 𝜇k 
and 𝚺k 

A two step process (like k-means):

1. Fix the parameters 𝜃, estimate expected 
value of Zk

2. Fix Zk, compute MLE of the parameters 𝜃

This technique generalizes beyond GMMs and 
is called Expectation-Maximization (or EM)

N

K

z(i)x(i)

𝜋k𝜇k𝛴k
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Maximizing likelihood with hidden variables
For models that combine some observed random variables x(i) and some hidden 
random variables Z(i) we’d like to maximize the log likelihood

Since we can’t move the log inside the second sum, this can be challenging to 
optimize even for simple distributions (Gaussian, exponential family, etc)
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Maximizing “complete data” log likelihood
What if we knew what each Z(i) was? We can define the complete data log 
likelihood as

We can’t compute this directly, since we don’t know Z(i) so let’s work with the 
expected complete data log likelihood

Expectation over possible Z(i) values“Auxiliary” function
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Expectation-Maximization
The E step: 

The M step:

Only need to calculate the terms in Q(𝜃,
𝜃(t-1)) that the argmax in the next step 
depends on. These are called the 
expected sufficient statistics (ESS)

We can show that alternating between these two steps 
monotonically increases the log likelihood of the observed data!
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EM for GMMs (1)
We can plug in definitions for our GMM to the EM definitions Definition

Use z(i) to “select” the 
correct Gaussian

Plug in definition of 
p(x(i),z(i)|𝜃) from 

GMM model

Move log inside product, 
becomes sum
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EM for GMMs (2) Log identity:
log ab = b log a

Does not depend on Z(i)
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EM for GMMs (3)
Define the “responsibility” 
cluster k takes for point x(i)

rik = p(Z(i)=k|x(i),𝜃(t-1))

Log identity: 
log a*b = log a + log b

With Q in this form, we can compute rik if 𝜃 is fixed, and optimize for 𝜃 if rik is fixed!

12



We can compute the “responsibility” by just normalizing the weighted probability

EM for GMMs - The E step

Bayes rule

Probability under the kth mixture

Probability of the kth mixture
Normalize!
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EM for GMMs - The M step (1)
For the mixing coefficients,

Weighted sum of points assigned to cluster

14



EM for GMMs - The M step (2)
For the gaussian parameters, we use the rik weighted mean and covariance:

Weighted mean of x(i) assigned to cluster Weighted empirical covariance
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EM for GMMs - example (1)
Init random 𝜃 First E step
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EM for GMMs - example (2)
After first M step After 3 iterations
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EM for GMMs - example (3)
After 5 iterations After 16 iterations
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EM properties
● Each iteration monotonically improves the likelihood of the data
● Like k-Means finds a local optima (Note that swapping cluster labels doesn’t 

change likelihood, so this problem is non-convex)
● Unlike k-Means, no fixed number of iterations (soft assignment means there 

isn’t a finite number of configurations)
● Works on many different problems as long as you can define both the E step 

and the M step
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Summary and preview
Wrapping up

● Gaussian Mixture Models let us perform “soft clustering” where instead of a 
partition function, we can assign a probability of belonging to any of the 
clusters

● We can fit the parameters of a GMM using a technique known as Expectation 
Maximization (EM): alternating between finding the expected value of the 
complete data likelihood, and finding the parameters which maximize this 
expectation

Next time: Hidden Markov Models
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