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Definitions
Utility (17.2)

Optimal policy (17.4)

S0=s, S1, S2, S3…



Bellman equation
If we know U𝜋*(s), we can compute the optimal policy. How do we find U𝜋*(s)?

Answer: the Bellman equation (17.5)

Where did this equation come from?



Bellman proof (1)
Start with the definition 17.2 and see what we can do

Expectation facts

constant
S0 = s

Not quite U𝜋*(s’)



Bellman proof (2)
More expectation facts

Getting closer, but now the index is off

S0=s, S1, S2, S3…

S0=s, S1=s’, S2, S3…



Bellman proof (3)

    Here’s U𝜋(s’)!

Can’t compute this if we don’t 
know 𝜋, what to do?



Bellman proof (4)

Proof done!

Optimal policy



Using Bellman

How can we use this to solve for actual values of U(s)?

● This is a system of nonlinear equations (because of max)
● Instead of asserting equality, what if we used it as an update?

Bellman Update:



Value Iteration - algorithm

(figure 17.4 in text)

Iteratively apply the Bellman update until we converge or run out of iterations

Convergence check (not needed for project)

def Value_Iteration():
Initialize U
for i in iterations:

Initialize new_U
for s in states:

new_U(s) = R(s) + gamma* max(sum(p(s’|a,s)*U(s’)))
U = new_U
Optionally break once convergence criteria met



Value Iteration - convergence proof (1)
How do we know just applying the Bellman update over and over again will 
eventually converge to the correct utilities?

Notation

We call this “applying the Bellman operator”

Definition



Value Iteration - convergence proof (2)
FACT: The Bellman operator is a contraction

This means applying the Bellman operator brings any two U’s closer together (for 
hints at why, see exercise 17.6)



Value Iteration - convergence proof (3)
Definition: If B[U] = U, U is called a fixed point of the operator B (applying the 
operator doesn’t change anything)

FACT: Any contraction can have at most 1 fixed point



Value Iteration - convergence proof (4)
So the Bellman operator is a contraction, it can have at most one fixed point. How 
does that help?

The Bellman equation tells us that U𝜋* is a fixed point of the Bellman operator!

Bellman Equation

Bellman Update



Value Iteration - example (1)
States {s1, s2, s3, s4}

Actions {up, down, left, right}

Transition probability: “0.8 correct, 0.1 perp”
p(s4| R, s1) = 0.8, p(s1| R, s1) = 0.1

Rewards: “1.0 for s4, -0.04 for others”

Discount: 0.5

Initial U: 0.1

Initial 𝜋: any action
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Value Iteration - example (2)

Iteration 1
U(1)(s1) = -0.04 + (0.5)*max{ ...0.1…} = 0.01

U(1)(s2) = U(1)(s3) = 0.01 

U(1)(s4) = 1.0 + (0.5)*max{ ...0.1…} = 1.05
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Value Iteration - example (3)

Iteration 2
U(2)(s1) = -0.04 + (0.5)*max{

U: (0.9)(0.01) + (0.1)(1.05)
     (0.0)(0.01) + (0.0)(0.01) = 0.114
D: (0.1)(0.01) + (0.1)(1.05) +
     (0.8)(0.01) + (0.0)(0.01) = 0.114
L: (0.9)(0.01) + (0.0)(1.05) +
    (0.1)(0.01) + (0.0)(0.01) = 0.01
R: (0.1)(0.01) + (0.8)(1.05) +
    (0.1)(0.01) + (0.0)(0.01) = 0.8423 }

U(2)(s1) = -0.04 + (0.5)*(0.8423) = 0.381
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Value Iteration - example (4)

Iteration 2
U(2)(s1) = 0.381

U(2)(s2) = -0.04 + (0.5)(0.01) = -0.035

U(2)(s3) = 0.381 (symmetric w/ s1)

U(2)(s4) = 1.0 + (0.5) max{
U: (0.1)(0.01) + (0.9)(1.05) = 0.946
D: low
L: low
R: 0.946 (symmetric w/ U) } = 1.0+0.473

 U(2)(s4) = 1.473
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We found the correct policy after just two 
iterations!

But our utility function hadn’t converged yet…

Notes

● Policy tends to converge faster than utility
● Each iteration only updates utility from 

states “one hop away:” may take a long 
time to propagate from goal

● If we could “fix” the policy, the max 
operator would go away, and the Bellman 
update would be linear
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Policy Iteration
If the policy is fixed, the Bellman 
equation becomes

We can use this to implement 
Policy_Eval()  as either a 
simplified version of Value 
Iteration, or by solving a system 
of linear equations

def Policy_Iteration():
Initialize U, policy
for i in iterations:

new_U = Policy_Eval(policy, U)
for s in states:

a’ = argmax(sum( p(s’|a,s)*new_U[s’]))
if a’ is better than old policy with new_U:

new_policy[s] = a’
else:

new_policy[s] = policy[s]
if policy[s] = new_policy[s] for all s:

break
else

policy = new_policy



Summary and preview
Wrapping up

● The Bellman equation gives us a way to compute the utility of the optimal 
policy, which in turn gives us a way to find the optimal policy

● Value Iteration is an iterative method that is guaranteed to converge to the 
optimal utility values

● Policy Iteration can potentially speed up this process, by keeping the policy 
fixed and using a simplified form of Bellman

Next time: Examples and Reinforcement Learning


