
Smoothing
CS 580

Intro to Artificial Intelligence

Smoothing
What if we want to know the probability of the state variable at a given point in
time in the past?

If we want to know about Xk and we have evidence from E1:t, we should
incorporate that (rather than just using E1:k)

Forward-Backward (1)
The new probability we care about is p(Xk|e1:t) which we can split into two pieces

Bayes rule

Conditional Independence

We already know how to compute this!Let’s take a closer look at this term

Forward-Backward (2)
Marginalize out Xk+1

Definition of
conditional prob

Cond. Indep.

Split ek+1:t into
ek+1 and ek+2:t

Cond. Indep.

Recurrence!Sensor Model Transition Model

Forward-Backward (3)
So our equation for smoothing is

Where f is the “forward” variable

And b is the “backward” variable

Base case: bt+1:t = p(et+1:t|Xt) = 1

Forward-Backward (4)
So we have an equation for how to smooth a sequence of evidence for a single
timestep, how do we do this for all the timesteps?

Key Idea: save the forward pass computations for use during the backward pass

def forward_backward(sensor_m, transition_m, prior, evidence):
fv[0] = prior
b = numpy.ones(len(prior))
for i in range(1,t+1):

fv[i] = forward(fv[i-1],evidence[i],sensor_m,transition_m)
for i in range(t,0,-1):

smoothed[i] = normalize(fv[i]*b)
b = backward(b,evidence[i],sensor_m,transition_m)

return smoothed

Weather example (1)
Example problem: a security guard would like to know about the weather. They
can see people entering/leaving with umbrellas, but can’t see directly whether it’s
raining or not.

Weather example (2)
Observations: (U1=True, U2=True)

Forward pass
f1:0 = p(R0) = <0.5, 0.5>
f1:1 = 𝛼 <0.9,0.2>*(<0.7,0.3>*0.5 +<0.3,0.7>*0.5)
 = 𝛼 <0.45,0.1> = <0.818, 0.182>
f1:2 = 𝛼 <0.9,0.2>*(<0.7,0.3>*.818+<0.3,0.7>*.182)
 = 𝛼 <0.565, 0.075> = <0.883, 0.117>

Backward pass
b3:2=1
b2:2=(.9*1*<.7,.3> + .2*1*<.3,.7>) = <0.69,0.41>, smoothed = <0.927,0.073>
b1:2=(.9*.69*<.7,.3> + .2*.41*<.3,.7>) = <.459,.243>, smoothed = <0.894,0.106>

The most likely sequence (1)
What is the most likely sequence of states?

Note: not the same as the most likely state at each step!

The most likely sequence (2)
Rephrase: what is the probability of the last state Xt in the most likely sequence?

Bayes’ Rule on et and x1:t-1, Xt

Sensor Markov

Product rule on x1:t-1, Xt

Transition Markov

Recurrence!Sensor Model Transition Model

The most likely sequence (3)
Define the max variable

Compare with the forward variable

Swapped sum for max

The Viterbi algorithm
1. Init with m1:0 = p(X0) (prior)
2. For each i in 1:t

a. Compute m1:i
b. Store the best state that leads to Xi (bold

arrows)
3. max(m1:t) is the probability of the most

likely sequence
4. The actual sequence can be recovered by

following backpointers from the most likely
final state

Filtering, smoothing, Viterbi
Exact Filtering
f1:T: space O(|S|), time O(|S|*T), Online

Smoothing (forward-backward)
f1:T: space O(|S|*T), time O(|S|*T)
b1:T: space O(|S|), time O(|S|*T)
Offline (fixed-lag smoothing online version)

Most Likely Sequence (Viterbi)
m1:T: space O(|S|*T), time O(|S|*T), Offline

Summary and preview
Wrapping up

● Two more inference algorithms: Smoothing, and Viterbi
● All of these inference algorithms can be modified to work with Bayes nets with

different structures
● Additionally, for some Bayes nets, we can actually learn the parameters given

sequences of observations (Expectation-Maximization)

Next time

● Search, as an interlude to ML

