
Neural Networks
CS 580

Intro to Artificial Intelligence

A simplified diagram of a neuron

The neuron fires after the input exceeds some threshold,
propagating signal to the next layer of neurons

A computational “model” of a neuron (1)

Weighted combination Non-linear function
(activation, threshold,
transfer)

Output/
Activation

Input to next layer

A computational “model” of a neuron (2)

Activation functions
● Introduce some non-linearity (otherwise, same as linear regression)
● Some popular choices:

Logic
circuits

As “logic circuits” (1)
Let X={0,1}2, Y={0,1}, g(a) = 1 if a>0 else 0

>0?

x1

x2

y1

W11

W21

AND:

W01 = -0.5

W11 = 0.3

W21 = 0.3

W01 “Bias” weight

x1

x2
y=0

y=1

As “logic circuits” (2)
Let X={0,1}2, Y={0,1}, g(a) = 1 if a>0 else 0

>0?

x1

x2

y1

W11

W21

OR:

W01 = -0.3

W11 = 0.5

W21 = 0.5

W01 “Bias” weight

x1

x2

y=0

y=1

As “logic circuits” (3)
Let X={0,1}2, Y={0,1}, g(a) = 1 if a>0 else 0

>0?

x1

x2

y1

W11

W21

XOR:

W01 =

W11 =

W21 =

W01 “Bias” weight

x1

x2 ?

A single neuron is equivalent to picking a hyperplane.
Can’t correctly label data that is not linearly separable.

As “logic circuits” (4)
Let X={0,1}2, Y={0,1}, g(a) = 1 if a>0 else 0

AND

x1

x2

y1

x1

x2

>0?

V01

V11

V21

V31

XOR:

V01 = -0.25

V11 = 0.5

V21 = -1.25

V31 = 0.5

y=0

y=0

y=1

In general, we can build any logic circuit with a network
of neurons, as long as we have enough units in each
layer.

Feed-forward networks
● A composition of multiple activation functions
● No “internal state”, just an input->output mapping

gx1

x1

xN

...

g

g

g

g

g

...

g

g

g

g h

Input Layer Output LayerNetwork Depth

Layer Width

The perceptron
● A single “layer”, one unit per output

g
x1

x2

xD

...

g

g

y1

y2

...

yK

How can we learn the weights?

Simplified problem domain
Let
X = {0,1}D

Y= {0,1}
g(a) = 1 if a > 0 else 0

The perceptron learning rule

Loop:
Pick (x(i), y(i)) from the training data
Foreach wj,k:

If the weights stop changing, done!

g
x1

x2

xD

...

g

g

y1

y2

...

yK

The perceptron learning rule - notes
● If the predicted output and the actual output agree, weight doesn’t change

((y-h(x)) = 0 ⇨ don’t change weight)
● If predicted output is 0 and actual output is 1, weight wasn’t large enough to

get past threshold: increase weight
((y-h(x)) > 0 ⇨ increase weight)

● If predicted output is 1 and actual output is 0, weight was too large, decrease
((y-h(x)) < 0 ⇨ decrease weight)

● Learning rate 𝛼 controls how much to change weight based on a single
example (if training data contains noise, make small changes)

● If dataset is linearly separable, the perceptron rule is guaranteed to fit the
training data in a finite number of steps

More complex networks
● Notice, that for a single layer, the weights

for different outputs do not interact:
training can happen in parallel

g
x1

x2

xD

...

g

g

y1

y2

...

yK

● For different activation functions, use
Stochastic Gradient Descent

● For multiple layers, weights do interact…

● New algorithm: Backprop

y1

… … y2

↑↓ ↑

↓

↓

↑

Stochastic Gradient Descent for NNs
Like Gradient Descent, except we only use a
single point instead of an entire dataset

Loop:
Pick (x(i), y(i)) from the training data
Foreach wj,k:

If the weights stop changing, done!

Where

Notes:

● We want to move to a minimum of the
error, so we move down the gradient with
the (-1)

● Gradient Descent, like hill-climbing can get
stuck in local optima. Empirically,
Stochastic Gradient Descent seems to be
able to avoid getting stuck.

Gradient of the error function, single layer (1)

Chain rule

Definition of ak

Single layer

Gradient of the error function, single layer (2)

Chain rule g’() = deriv. of g()

Definition of ink

Comparing Perceptron rule with SGD (single layer)
Perceptron rule

● Guaranteed global convergence (linearly
separable data)

● Requires step threshold function
● Perceptrons (single layers) only

SGD (single layer)

● Probabilistic convergence in the limit
● Works with any g() that has a derivative
● Generalizes to more than one layer

How can we generalize this to more than one
layer?

Backprop

The derivative of the error function for a weight can be written in terms of

● The derivative of the threshold function (g’)
● The input from the previous layer (activations)
● The error from the following layer (error)

g

g

g

g

g

g

g

g

g

g

Activations

Gradient

“The Backward Propagation of Error”

Weight updates for multilayer networks

where for the output layer

and for hidden layers

Weight from j to k

Delta from following layer

Summary and preview
Wrapping up

● Perceptrons: easy to train for linearly separable functions
● Stochastic Gradient Descent: a variant of GD using a single training datapoint

at a time
● Backprop for training multi-layer feed-forward neural networks, has two

stages layer by layer:
○ Feed signal forward, store activations
○ Propagate error backwards, update weights

Next time: Deep Learning

