Uncertainty

CS 580
Intro to Artificial Intelligence



What have we done so far

Planning
Assumptions: Fully observable, fully known, fully deterministic environments
Solution: sequence of actions (plan) [Up, Up, Right, Right, Right]

Markov Decision Processes
Assumptions: Fully observable, fully known, stochastic actions environments
Solution: state to action map (policy) x(s,) = Right, z(s,) = Up, 7(s,) = Up

Reinforcement Learning
Assumptions: Fully observable, partially known, stochastic actions environments
Solution: state to action map (policy)



Sensor uncertainty

We’'ve been assuming we can tell what state
we're currently in with perfect accuracy. This is
often not true!

e |[s it going to rain in the next hour?

e Dol have allergies or a cold?

e How much time do | have before my
battery runs out?

Probabilities to the rescue!
S ={loc’’A, ‘A-clean’:True, ‘B-clean’:False} vs
S = {‘loc-is-A’:0.5, ‘A-clean’.0.9, ‘B-clean’:.0.2}

We can ask questions like: “What’s the
probability that both A and B are clean?”
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Probabilistic Inference

Represent components of state as Random How do we know the distribution? Two ways:

Variables:
Sampling by observing many times

p(X; =TRUE)=p, 0<p<l1
e Expected utility from RL

Random Variables can be discrete or
Provided as part of the problem description

continuous
Raining € {TRUE, FALSE} e p(Raining) = <0.1, 0.9>
Battery € [0, 00) e p(Battery > x) = e~
The function that determines the probability p(Raining=T) | p(Raining=F)
value is called the “distribution” of that RV p(x)
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Rules of Probability

1. The probability that a RV takes on some 3. Additivity

value is always between 0 and 1 p(A or B) — p(A) + p(B) — p(A and B)
0<p(X =2)<1

2. Probability of deterministic events

p(TRUE) =1, p(FALSE) =0

Aand B
p(A = TRUE V A = FALSE) = p(A = TRUE) + p(A = FALSE) — p(A = TRUE A A = FALSE)
1 =p(A = TRUE) + p(A = FALSE) — 0
1 — p(A = FALSE) = p(A = TRUE) °



Interactions between Random Variables

With multiple interacting RVs, the probability distribution that includes all of them
together is called the joint distribution

Notation
p(X): distribution, function or table
Example: p(Cavity, Toothache, Catch) p(X=x): probability, single number
Toothache s Toothache
Catch =Catch Catch =Catch
Cavity 0.108 0.012 0.072 0.008
=Cavity 0.016 0.064 0.144 0.576

Facts: table sums to 1, all combinations of all RVs, one cell per “configuratioD
p(Toothache=F, Cavity=F, Catch=F) = 0.576




Events & Marginalization

e An event is a setting of some subset of random variables
e You can use the joint distribution to compute the probability of any event by
adding up all the table entries that correspond with the given configuration

Tooth = Tooth

Cat aCat Cat aCat
p(Cav=T) = 0.108 + 0.012+0.072+0.008 ¢,y 0108 0012 0072 | 0.008
=0.2

Marginalization

~Cav| 0.016 | 0.064 | 0.144 | 0.576
p(Cav=T or Tooth=T) = 0.108+0.012+0.072+0.008 +0.016 + 0.064 = 0.28

p(Cav=T and Tooth=T) =0.108 + 0.012 = 0.12



Conditional Probability (1)

e When one Random Variable impacts the value of another
“If X=v, what is the probability of Y=w?"

p(Y =w and X = v)

plY =w| X =v) = (X =)

“Conditioned variable”

Notation
p(Y|X=v): distribution, function or table
p(Y=w|X=v): probability, single number




Conditional Probability (2)
Typically, an agent wants to know conditional probabilities
p(S=s|E=¢e)

T X Tooth = Tooth
Cat aCat Cat aCat

State Evidence
Cav | 0.108 0.012 0.072 0.008

mCav 0.016 | 0.064 | 0.144  0.576

Example:
p(Cav=T | Tooth=T) = p(Cav=T and Tooth=T)/p(Tooth=T)

= (0.108+0.012)/(0.108+0.012+0.016+0.064) = 0.6
p(Cav=F|Tooth=T) = (0.016+0.064)/(0.108+0.012+0.016+0.064) = 0.4



Normalization p(Cav=T | Tooth=T) = 0.6
p(Cav=F | Tooth=T) = 0.4

Notice that the two probabilities summed to 1 across Cavity (not Toothache)

In general, we don’t have to know/compute the denominator, we can “normalize”
p(X,E =e)
p(E = e)
l=a-p(X =TRUE,F =¢)+ a-p(X = FALSE, E = ¢)
1 =a[p(X = TRUE,FE = ¢) + p(X = FALSE, E = ¢)]
1

B [p(X = TRUE, F = e) + p(X = FALSE, F = ¢)]

p(X |E=e)= —a-p(X,E =e)
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Hidden Variables

Frequently our agent won’t have settings for all of the random variables.

Solution? Sum them out!

p(X|E:e):a-p(X,E:e):aZp(X,E:e,th)
heH

In the previous example, Catch was a hidden variable:
p(Cav=T|Tooth=T) = ap(Cav=T,Tooth=T,Cat=T) + ap(Cav=T,Tooth=T,Cat=F)
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Example - marginalization and normalization

What's the probability you have a cavity if you don’t have a toothache?

p(Cav|Tooth=F) = a p(Cav,Tooth=F) = « th{T,F} p(Cav, Tooth=F,Catch=h)
= af p(Cav, Tooth=F, Cat=T) + p(Cav, Tooth=F, Cat=F)]

= a[ <0.072, 0.144> + <0.008, 0.576>]

= a <0.08, 0.72>

Tooth =Tooth
Must sum to 1, so

@(0.08+0.72) = (0.8) = 1
a=1.25

Cat aCat Cat aCat
Cav | 0.108 0.012 0.072 0.008

=Cav 0.016 | 0.064 | 0.144  0.576

p(Cav|Tooth=F) = <0.1, 0.9>
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Conditioning

e Given full joint probability, agent can compute anything about the RVs!

e Usually, agent only has access to some conditional probabilities, not their joint
distribution

e Can get around this by marginalizing and leveraging the definition of
conditional probability

Ex: How can we get p(X) (marginal) if we don’t know p(X,Y), just p(X|Y) and p(Y)?

Cond. Prob. def. p(X|Y)=

p(X,Y)
p(Y)

p(X]Y) -p(Y)=p(X,Y)

Marginalize Y

) p(X | Y =y)p(Y =y) =D p(X,Y =y) = p(X)

Yy Yy 13



Independence

Two random variables are independent if and only if their joint probability is the
same as the product of their marginals

Al B <
p(4, B) = p(A)p(B)
p(A| B) = p(A)
Similarly, two random variables can be conditionally independent given a third
Al B|C <

p(A,B|C)=p(A|C)p(B|C)
p(A| B,C)=p(A|C)
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Independence Example Tooth ~Tooth
Cat —Cat Cat —Cat

Are Catch and Toothache independent? Cav | 0.108 | 0.012 10.072 | 0.008

=Cav 0.016 | 0.064 | 0.144 | 0.576

p(Catch=T, Toothache=T) = 0.124

p(Cat=T)*p(Tooth=T)=(0.108+0.016+0.072+0.144)*(0.108+0.012+0.016+0.064)
=(0.34)*(0.2) = 0.068 != 0.124 (NOT INDEPENDENT)

What about conditioned on Cavity?
p(Cat=T,Tooth=T|Cav=T) = 0.54

p(Cat=T | Cav=T)*p(Tooth=T|Cav=T) = 0.9*0.6=0.54

... also checks out for each setting of Cat, Cav, and Tooth
(CONDITIONALLY INDEPENDENT given Cavity)



Factoring the joint probability with independence

e Suppose we add Weather as a RV to the Cav,Cat, Tooth model, where
whether can take on 4 values: {Sunny, Rainy, Foggy, Snowy}

p(Cav,Tooth,Catch,Weather) = p(Cav, Tooth,Catch)*p(Weather)

2x2x2x4=32 cells 2x2x2 + 4=12 cells
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Bayes Rule

Additional TRUE FACT about conditional probabilities

_p(B|A4)-p(4)

Follows by plugging in definition of conditional probability
p(B | A)-p(A) =p(A,B) =p(A| B)p(B)

This generalizes to more than two RVs, and gives us the product rule
P(A,B,C) =p(A,B|C)-p(C) =p(A| B,C)-p(B | C)-p(C)

p(Xl,XQ,...,Xd) =p(X1 | Xz,...,Xd) -p(X2 | X3,...,Xd) * e -p(Xd_l | Xd) -p(Xd)

Note: this is true for any ordering of the XJ.!
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USIng Bayes RUIe Easy to measure

We can use Bayes Rule to “flip” the conditioning variable l
CAUSE
p(CAUSE | EFFECT) = p(EFFECT | CAUSE) P )
} ‘ p(EFFECT)
Difficult to measure Easy to measure No need to measure
(normalize!)

Example: Medical Diagnosis “What's the probability | have the flu given | have a
cough?”

p(Flu|Cough=T) = & <p(Cough=T|Flu=T) p(Flu=T), p(Cough=T|Flu=F) p(Flu=F)>
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Incorporating multiple pieces of evidence

“What's the probability of Cavity given Catch and Toothache?”

Applying bayes rule and normalizing:
p(Cav | Cat, Tooth) = « p(Tooth, Cat | Cav) p(Cav)

But since Catch and Tooth are conditionally independent given Cavity
p(Cav | Cat, Tooth) = a p(Tooth | Cav) p(Cat | Cav) p(Cav)

IF our evidence variables are conditionally independent from one another given
the cause variable, we can significantly simplify things!
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Summary and preview

Wrapping up

e To handle uncertain sensors, state now describes probabilities

e The joint probability distribution contains all the information we need to
answer any question about any subset of the random variables it describes

e Marginalization, Normalization, and Bayes Rule are all “probability tricks” we
can use to simplify/compute specific probabilities

Next time

e Detailed example: Avoid the wumpus!

20



