Logistic Regression
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Directly modeling class probability

Let’s look at modeling the probability that a given x has class y. For now, restrict
ourselves to binary classification, and the Bernoulli distribution.

Yy ={0,1}, XY = RPD
p(y | %;0) = ho(x)? (1 — ho(x))'
he(x) = p(y = 1]x;0)

So we need a hypothesis class that maps from RP to [0,1]
hg : X — [O, 1]



The logistic function (aka sigmoid)

Candidate function

o(z) = —

- l1+e %

Properties
As z—-», 5(z)—0
As z—, 6(z)—1

o “squashes” it's input to the range (0,1)

Derivative
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The logistic function (1D example)
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Logistic Regression - MLE (1)

Plug in our definitions to get an objective to minimize

HP( () 4@ |h0>

h07

NLL(hg;S) - —logﬁ he,

Yy=1{0,1}, X=R”

p(y | x;0)

hg (X)

= ho(x)?(1 — he(x))"~

=ply=1[x;60)

Y

Zlogp( (x®,y) | he)

— Zlog [he (x(i))ym (1 — hg (x(i)))(l—y(i))]
1=1

Mz

=1

[(z) log hg(x(™)

log(a - b) =loga + logh

log(a®) = bloga

+ (1 -y @) log(1 — hy(x®))]




Logistic Regression - MLE (2)
Find the derivative so we can use gradient descent

N -
VoNLL(ho; S) = =V » _ |y loghs(x®) + (1 — y) log(1 — he(xm))]
i=1
N B . . . .
= V5 (4@ logo(6Tx®) + (1 -y @) log(1 - a(eTxm)]
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Using: chain rule, derivative of log, and definition of h



Logistic Regression - MLE (3)

d
5 0(2) = 0(2)(1 - 0(2))

Use the derivative of the logistic function to get some terms to cancel

VoNLL(hg; S) = —
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:y(i)(l —o(0TxD)) + (1 - y(i))(—a(ﬁTx(i)))] @

Using: chain rule, derivative of sigma



Logistic Regression - MLE (4)

Do some rearranging to simplify the terms inside the brackets
N

VoNLL(hg;S) = =) :y(i)(l —(0Tx®)) + (1 — ym)(_a(ng(z‘)))] (@)
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Logistic Regression - MLE (5)

It turns out, we can use a linear algebra representation like we did with linear

regression
i y(l) i ) h,g(x(l)) il T x(1) T
y(2) ho(X(Z)) — x@
Y —_— 3 he —_— 3 X —_— .
I y(N) ] I he(X(N)) ] | — x(N) ]

Using these we can rewrite the gradient of the NLL as

V¢NLL(hg;S) = X "(hy —Y)



Logistic Regression vs Linear Regression

It turns out that this loss function is convex, just like linear regression! (proof hint:
find the Hessian, show that it is pos. def.). We can use Gradient Descent.

Actually, the gradient for Linear Regression and Logistic Regression are quite

similar

Logistic Regression
VoNLL(hg;S) = X"(hy —Y)

Linear Regression

1
VoLs(hg) = N[XTXH —X'Y]
— 1 T
= X (X6 —Y]
= iXT[m, ~Y]

N




Logistic Regression with Regularization

Just like with Basis Function Expansion, we can also apply regularization to
Logistic Regression:

Reqularized Logistic Regression
Vo [NLL(hg; S) + A|0]|*] = X "(hg —Y) + A0

Regularization is important here, because otherwise gradient descent will “push”
10]|—< to make p(y=y"| h (x))—1 when the data is linearly separable.



Linear Separability

What kinds of data will Logistic Regression work well on?

0 0 0. X 0 X
X X 4 X X X 0]

Datasets where class can be separated by a straight line (hyperplane) are called
linearly separable.



Composing multiple logistic functions

To handle non-linear datasets, we could use the
Basis Function Expansion trick, or...

What happens if we compose a bunch of
logistic functions?

he, (x) = o (0, x)

K
Z Yrh Ok (X) Hriand
08
k=1

0.6

hy (%)

04

= a(¢Th9k) - Lt




Feed-forward Neural Network preview




Summary and preview

Wrapping up

e Logistic Regression is a way of modeling the probability of the class label

e The MLE gives us a gradient that we can plug in to Gradient Descent to fit the
model parameters

e Logistic Regression can fit linearly separable data well (to the point that we
need to use regularization to prevent overfitting)

Next time

e Support Vector Machines



