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Games of Chance
Plenty of games include elements of 
randomness

● Poker, Blackjack, Solitaire (shuffling)
● Backgammon, Monopoly (dice)
● Roulette, Pachinko, Slots (mechanical)

We can still use search, if we modify our search 
tree to include probabilities with edges

For adversarial games, we can introduce 
another player, “Chance”, and use a slightly 
modified version of Minimax



Expectiminimax
The “Expectiminimax” value is the same as Minimax except that for chance 
nodes we take the expected value of all the children

We end up with a version of adversarial search that uses this instead of 
Minimax-Value.



Stochastic Actions
In the single-agent case, instead of having a 
“Chance” player, we can model actions as 
having non-deterministic outcomes 

Deterministic actions
Result(s,a) = s’

Stochastic actions
Result(s,a) = {s1,s2,...,sk}

This type of representation is called an “And-Or 
search tree”
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Solutions for And-Or search trees (no cycles)
As long as there are no cycles, we can still do 
search!

The result of searching an And-Or tree is no 
longer a sequence of actions, but a 
contingency plan:

[Clean, if S=5 then [Right, Clean] else [Left]]

An acyclic contingency plan has a nested set of 
sub-plans for each possible outcome, and can 
also be represented as a tree 
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One version of And-Or Search

def or_search(state, prob, path):
if prob.goal_test(state):

return empty plan
if state in path:

return failure   #cycle
for action in prob.acts(state):

S = prob.result(state,action)
np = [state,]+path
plan = and_search(S, prob, np)
if plan != failure:

return [action,]+plan
return failure

def and_or_search(prob):
or_search(prob.initstate,prob,[])

def and_search(states, prob, path):
plans = list()
for s in states:

subplan=or_search(s,prob,path)
if subplan == failure:

return failure
plans.append(subplan)

return plans

Like DFS, but with a base-case for cycles, and 
alternating AND/OR layers. Compare Fig 4.11



Solutions for And-Or search trees (with cycles)
Actually, even if there are cycles, we can 
sometimes find a solution.

If each outcome of a non-deterministic action 
occurs eventually, we can still find a “solution” 
that will… eventually… get to the goal.

To keep our solutions compact, we can 
introduce labels for repeated steps

[ L1: Clean, if S=5 then L1 else [Right ...]]
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From contingency plans to policy
These “plans” are starting to get increasingly 
complex…

Instead of a sequence of actions (or a tree of 
sequences), why not find a mapping from state 
to action so that no matter what state we end up 
in, we can immediately know what to do next? 
This kind of mapping is called a policy.

Analogy
A “plan” is a list of directions
A “policy” is a map marked with arrows



High level review
Uninformed search 
BFS, DFS, IDS, UCS

Informed search
A*, heuristics

Adversarial search 
Minimax and alpha-beta pruning

Non-deterministic
Expectiminimax, And-Or, and contingency plans



High level preview
Before the midterm

Search
DFS, BFS, UCS, A*, Heuristics, Adversarial 
Search, Expectiminimax, Contingency Plans

Stochastic actions
Markov Decision Processes, Reinforcement 
Learning

After the midterm

Decisions with uncertainty
Probability, Bayes Nets, Hidden Markov Models, 
Filtering

Optimization
Hill Climbing, Simulated Annealing, Evolutionary 
Algorithms, Gradient Descent

Machine Learning
Linear Regression, Neural Networks, Deep 
Learning, Decision Trees, Random Forests, 
Clustering*


