
Ensemble Methods
CS 580

Intro to Artificial Intelligence



Some notes about Decision Trees
● Decision Trees can work for regression

○ Output is the average of the values in the leaf (other choices work too)

● DT’s can work with continuous features
○ Need a new method to pick “questions” (datapoint values, midpoints, random, etc…)
○ Splits the input space into (axis aligned?) boxes

● The complexity of DT’s grows with depth, extremely quickly (2^2^D)
○ Might be difficult to pick a good maximum depth: depth d might underfit, but d+1 might overfit

● Two techniques for controlling complexity with a little more nuance
○ Bagging: build a bunch of overfit trees, then “smooth” the result
○ Boosting: start with a single underfit tree, then iteratively improve by adding more trees

● ML techniques that use a collection of learners: Ensemble methods
● DT variants that use a collection of trees: Forests

2



DT’s for continuous input spaces

>

>

3



Simple example

x y

(1,1) -1

(1,2) 1

(2,1) 1

(2,2) -1

x1>1.5

F T

x2>1.5 x2>1.5

c=-1 c=-1c=1 c=1
𝜃1=1.5

𝜃2=1.5 𝜃3=1.5

Question: did we need 3 layers?

4



Decision Trees - Iris example (1)

5



Decision Trees - Iris example (2)

6



Bagging (Bootstrap Aggregation)
Limiting depth isn’t very precise, can quickly go from underfitting to overfitting

What if we could smooth the output somehow?

Bagging: Fit multiple “different” trees to the training data. For prediction return the 
class that the most trees returned.

7



Random Forests
How do we get “different” trees if all we have is the one training dataset?

Idea 1: Randomly sample the data with replacement (the bootstrap part)

Idea 2: Pick split points and values randomly instead of optimally.

Uniform distribution

Component of x to split on

“Question”/threshold to use
Set of possible thresholds

8



Random Forest algorithm
Loop k=1…K times:

1. Sample the training dataset M times, with replacement
2. Fit a “Random Tree” to the sampled data, call it hk
3. Store the new tree

To classify a new point, x, get the output of ŷk = hk(x) for k=1…K, and

● For classification, return mode({ŷ1, ŷ2, … , ŷK})
● For regression, return average({ŷ1, ŷ2, … , ŷK})

9



“Random Tree” algorithm
random-tree-learning(examples, questions, default_val):

1. IF examples is empty THEN RETURN leaf(default_val)
2. ELSE IF all examples have same label THEN RETURN leaf(label)
3. ELSE IF remaining questions is empty THEN RETURN leaf(majority-label(examples))

ELSE
rand_q = question chosen at random
node = new DT node with question rand_q
subtree_default = majority-label(examples)
subtree_questions = questions without rand_q
FOREACH “v” response to rand_q DO:

subset = {element of examples where rand_q(example)=v}
subtree = random-tree-learning(subset,subtree_questions,subtree_default)
add branch to node for v pointing to subtree

return node

recursion

Since it is OK for our individual trees to 
overfit, typically we do not use a 
max_depth parameter: tree continues to 
grow until it fits the training data exactly

10



Comparing DTs and RFs (1)
Single Decision Tree Random Forest

11



Comparing DTs and RFs (2)

12



Boosting
Bagging can be memory/storage intensive, depending on how the data are 
distributed, and how the tree is represented.

Instead of starting with a very complex model and smoothing, combine the output 
of a bunch of very simple models to boost their performance.

Alternatively: an iterative process where each subsequent iteration tries to 
“correct” for the mistakes made by the previous set of learners. We can do this by 
weighting the training data that are misclassified.

13



AdaBoost
Start with uniform weights for all data points: w0

(i) = 1/N

Loop k=1…K times:

1. Fit hk to the training data using weights wk
(i)

2. Compute the weighted misclassification error
3. Compute new weights and a voting coefficient (𝛽k) for hk

To classify a new point, x, compute the weighted vote from each hk

If the hk are DT’s, typically 
max_depth=1 or 2 (decision “stumps”)

Trees with weighted data? 
Weight vote/avg at leaves.

14



AdaBoost graphically

Initial decision stump After 3 iterations After 120 iterations

15



Boosting notes
● AdaBoost tends to be resistant to overfitting in practice

○ AdaBoost can be shown to maximize the “margin” between the decision boundary and the 
training data.

○ Under certain assumptions about noise, this makes AdaBoost extremely robust.

● Can be generalized beyond Decision Trees to work with any “weak learner”
○ A weak learner is one that does slightly better than randomly guessing
○ Using weighted data to train hk can be tricky sometimes. One method that works with any 

learner: sample the training data according to the weight, then train as normal

● A version of this exists for regression instead of classification
○ Called AdaBoost.R2, needs a different definition for 𝛽k and wk

(i) based on different loss

16



Summary
Wrapping Up

● Generalizations to DTs for continuous inputs and outputs
● Two different techniques for handling overfitting in DTs: Boosting and Bagging
● Bagging: train a collection of overfit trees and smooth the output
● Boosting: train a collection of underfit trees iteratively to improve 

performance on errors in the previous iteration
● Both boosting and bagging are examples of ensemble methods: techniques 

for combining the output of other ML algorithms

17


