
Heuristics
CS 580

Intro to Artificial Intelligence

Romania - A* with straight line distance heuristic

118

Arad

Romania - A* with straight line distance heuristic
Arad (366)
[S(393),T(447),Z(449)]
[A]

Sibiu (393)
[R(413),F(415),T(447),Z(449),O(671)]
[A,S]

Rimnicu Vilcea (413)
[F(415),P(417),T(447),Z(449),C(526),O(671)]
[A,S,R]

Fagaras (415)
[P(417),T(447),Z(449),B(450),C(526),O(671)]
[A,S,R,F]

Pitesti (417)
[B(418),T(447),Z(449),B(450),C(526),C(625),O(671)]
[A,S,R,F,P]

Solution: [A->S, S->R, R->P, P->B]
Cost: 418

Why do we need consistency?
● Necessary in the proof to ensure that f(ni) never decreased
● Why might f(ni) decrease? Shortcuts!

A

C

B

D G

Shortcuts - example (1)
Heuristic: h(A)=15, h(B)=3, h(C)=10, h(D)=0, h(G)=0

Admissible? ✔

Consistent?

A

C

B

D G

10

5

4

3

10

h(n) <= c(n,a,n’)+h(n’)
h(A) <= c(A,->,B) + h(B)
15 <= 10+3 ⛔

Shortcuts - example (2)

A

C

B

D G

10

5

4

3

10

A(15)
[B(13), C(15)]
[A]

B(13)
[D(14), C(15)]
[A,B]

D(14)
[C(15), G(24)]
[A,B,D]

C(15)
[G(24)]
[A,B,D,C]

G(24)
[]
[A,B,D,C,G]

State A B C D G

h(State) 15 3 10 0 0

Solution returned: [A->B,B->D,D->G], cost 24
Optimal solution: [A->C,C->D,D->G], cost 18

Fixing Generic Search to handle shortcuts (1)
What was the problem?

● When a shorter path to D was encountered, D was already in the “closed” list
● If we find a shorter path for a node in the closed list, we need to update it’s

g(n)...
● And then all the g(n) of the children of of that node…
● Which may re-order the open priority queue…

Yuck

Fixing Generic Search to handle shortcuts (2)
Computationally

● update parent of s isn’t so
bad if we use backpointers

● recompute g and resort open
has to trace back the new path!

One implementation

● Do DFS from start state,
recompute g as you go

● Don’t expand a node if it’s
already in open

Note for project 1: this is
unnecessary as all the heuristics will
be consistent or inadmissible anyway

Initialize ‘current’ node to start state
Initialize ‘closed’ as an empty list
Initialize ‘open’ as one of (stack, queue, priority queue)
while not(current[‘state’] is goal state):

Add current[‘state’] to closed
successors = successors of current[‘state’]
for s in successors:

if not(s.state is in closed):
Add new node for state to open

elif s.cost+current[‘g’]< old cost to s:
update parent of s
recompute g and resort open

current = next node in open that’s not in closed
path = list()
while current has a parent:

Add current[‘action’] to the front of path
current = current[‘parent’]

return path

Heuristic effectiveness
The effective branching factor (b*) for a
heuristic is a way of characterizing how helpful
that heuristic is.

If A* finds a solution at depth d expanding N
nodes, then b* is the branching factor that a
uniform tree of depth d would need to contain
N+1 nodes

N+1 = 1 + b* + (b*)2+...+(b*)d

Lower effective branching factor indicates the
heuristic will be effective in solving larger
problems with reasonable computation time

d=3
N=7
b*=2

d=4
N=7
b*=1.23...

Simple problem domain: 8-puzzle
Initial state: scrambled board
Goal state: tiles in numerical order
Actions: slide one tile into the blank spot (move
the blank spot one tile)
Cost: 1 per move

Two heuristics (for comparison):

h1 = # of misplaced tiles

h2 = distance of all tiles to final position

h1 = 8
h2 = 18

h1 = h2 = 0

Experiment - nodes expanded for 8-puzzle
Depth 2 4 6 8 10 12 14 16 18 20 22 24

IDS 10 112 680 6384 47127 3644035

A*(h1) 6 13 20 39 93 227 539 1301 3056 7276 18094 39135

A*(h2) 6 12 18 25 39 73 113 211 363 676 1219 1641

● 100 random puzzles for each depth
● IDS didn’t finish in time for d>12
● Both h1 and h2 outperform IDS
● h2 seems better than h1 for d>6
● Effective branching factor is relatively

stable across problem sizes

Effective branching factor

IDS: 2.45 to 2.87

h1: 1.33 to 1.79

h2: 1.22 to 1.79

Is h2 always better than h1?
Yes!

For any node, h1(n) <= h2(n) (each out of place tile must move at least one space)

When comparing heuristics, if ha(n) <= hb(n) for all n, we say hb dominates ha

Since A* with consistent heuristics will always expand every node with
f(n)=g(n)+h(n)<C*, we should try to make h(n) as large as possible (still admissible
and consistent, efficient to compute)

Admissible heuristics: 0<=h(n)<=h*(n)

Heuristic design - problem relaxation
One way of generating heuristics is to use
solutions to a version of the problem with fewer
constraints

h1: path cost if tiles can “teleport” to the correct
spot

h2: path cost if tiles can slide over one another

The relaxed problem has the same state space
with additional edges: so the cost of a solution
in the relaxed problem is guaranteed to be an
admissible heuristic for the original problem

Heuristic design - composite heuristics

If we have a set of (admissible, consistent) heuristics that are non-dominated, we
can combine them!

h(n) = max{ h1(n), h2(n), …, hk(n) }

Note that this new heuristic dominates* all of the component heuristics

*technically it is non-dominated

Heuristic design - Pattern databases
Idea: pre-compute the solution to a simpler
sub-problem, and store the solution length.
When searching the larger problem, match
states against subproblem patterns and use the
solution length as the estimate

8-puzzle example: solve the puzzle for a subset
of the tiles. Different subsets yield different
heuristics.

Since sum(h1,h2,...) >= max(h1,h2,...), why don’t
we just add heuristics together?

Heuristic design - disjoint pattern databases

If you can split the problem into disjoint subproblems, where solving one does not
reduce the cost of solving another, you can actually add the subproblem solution
costs (instead of taking the max), but this can be trickier than you expect!

Summary and preview
Wrapping up

● We need consistency to ensure generic search expands in order of increasing
f(n). We can fix generic search to work even for inconsistent heuristics, but it
can get messy.

● Effective branching factor is a useful way of quantifying and comparing
heuristic “helpfulness”

● Several ways of designing heuristics: problem relaxation, composite
heuristics, and pattern databases.

Next time

● Adversarial Search

