
Solving Problems by 
Searching

CS 580
Intro to Artificial Intelligence



Simplifying the problem
Our first intelligent agent will be restricted to 
work on environments that are

● Known
● Fully observable
● Single-agent
● Deterministic
● Episodic*
● Static
● Discrete

Extensions that relax these assumptions

● Unknown (Learning agents)
● Partially observable (POMDPs)*
● Multi-agent (min-max search)
● Stochastic (probabilistic reasoning)
● Sequential (Hierarchical Planning)*
● Dynamic (Replanning)
● Continuous (RRTs and Controls)*



Search-based agent
def __init__(self,init_state):

self.state = init_state
self.problem = None
self.plan = list()
self.goal = None

def search_based_agent(self,percept):
self.state = self.update_state(percept)
if len(self.plan)<=0:

self.goal = self.make_goal(self.state)
self.problem = self.make_problem(self.state,self.goal)
self.plan = self.search(self.problem)

action = self.plan.pop(0)
return action

This agent is offline: it decides on a full plan of action before taking a single step



Components of a Search-based agent
● update_state(percept) - Construct a state representation from a given 

percept. 
{‘loc’:‘A’, status:‘clean’} →
{‘robot-loc’:‘A’, ’A-clean’:True, ‘B-clean’:self.state[‘B-clean’]}

● make_goal(state) - Define success (goal state? goal test?)
make_problem(state,goal) - set up actions, construct state space 
(explicit? successor function?), initialize book-keeping

● search(problem) - returns a sequence of actions that take the agent from 
the start state to the/a goal state



Example problem: Vacuum World

A B A B

A BA B

Left

Right

Left

Right

Left, 
Clean

Left, 
Clean

Right

Right, Clean
Clean

Start

GoalGoal?

Solution: 
[‘Right’, ‘Clean’]



Components of a problem
For non-trivial problems, we need a way to generate the state space without 
explicitly representing every node/edge

● Start state: The initial state, where the agent starts
● Successor function: S(state) returns a set of 

(action, successor_state) pairs
● Goal test function: Goal(state) returns true if the state is a goal
● Step cost: c(s1, a, s2) returns the cost of moving from s1 to s2 using 

action a



Components of a 
problem example: 
sudoku

● Start state: 
Partially filled board

● Successor function: 
S(state): states generated by 
filling in one blank space with a 
non-conflicting number 1-9

● Goal test function: 
Goal(state): Is the entire 
board filled with non-conflicting 
numbers?

● Step cost: 
c(s1, a, s2): 1

1 5

7 2 3 5 9 1

8 7

8 5 4

4 1 3 6 8

5 4 7

6 3

4 8 7 9 1 6

9 1



Components of a 
problem example: 
Romania

● Start state: 
‘Arad’

● Successor function: 
S(state): Neighboring cities 
of state

● Goal test function: 
Goal(state): 
state==’Bucharest’

● Step cost: 
c(s1, a, s2): distance (km) 
from s1 to s2 via highway a



Representing 
search space - tree 
version

● For some problems, the number 
of states is too large (infinite?) 
to construct an explicit graph

● We can build the pieces of the 
state space we need to search 
‘as we go’

● The search tree is rooted at the 
initial state, leaves are 
expanded into their successors, 
may contain duplicate states 
(but not nodes!)

● Implementation note: children 
have ‘back-pointers’ to parents

We know how to search trees!



Depth First Search



Breadth First Search



Iterative Deepening Search



Uniform Cost Search (Dijkstra’s)

S

R F

P

B



Comparing search algorithms

b: branching factor, d: depth of shallowest solution
m: maximum depth of the tree, 𝜖: smallest step cost, C*: cost of optimal solution

Complete: BFS & IDS (if b<∞), DFS(if m<∞), UCS (if 𝜖>0, and b<∞)

Optimal: BFS & IDS (if all steps cost 𝜖), UCS

BFS UCS DFS IDS

Time O(bd) O(b1+C*/𝜖) O(bm) O(bd)

Space O(bd) O(b1+C*/𝜖) O(b*m) O(b*d)



Preview: Generic Search Algorithm
DFS, BFS, and UCS can be implemented with a single algorithm! Choice of data 
structure for the “next child to expand” determines which one.

● BFS: queue (children are expanded in the order they are added)
● DFS: stack (children are expanded in last-in-first-out order)
● UCS: priority queue (children are expanded based on cost-from-start)

IDS requires a small tweak: a depth limit parameter



Summary and preview
Wrapping up

● Search based agents work offline to find a sequence of actions that gets them 
from the initial state to a goal state

● A search problem can be represented explicitly as a graph, or implicitly by a 
start state, a successor function, a goal test function, and a cost function

● With this formulation, we can use any number of well known search 
algorithms to solve search problems

Preview

● Generic Search Algorithm, Worked Examples


