
A* search
CS 580

Intro to Artificial Intelligence

Incorporating Domain Knowledge
We need a formal way to introduce our
knowledge about the problem to our agent

● “Distance by car is at least as much as
the straight line distance”

● “A completed Sudoku puzzle has to fill in
all the empty squares”

● “A TSP solution has to visit each node”

We can encode each of these as a function that
maps states to approximately remaining path
cost to the goal.

Heuristic
h(s) := approximate cost to goal

Attempt 1: Greedy Best-first Search
UCS, except use h instead of g as the priority.

[F(176), R(193)]
[S]

[B(0), R(193)]
[S,F]

Returned path:
S->F->B (cost: 310)

Optimal path:
S->R->P->B (cost 278)

State h(State)

Bucharest 0

Fagaras 176

Pitesti 100

Rimnicu
Vilcea

193

Sibiu 253

Our heuristic might not be accurate; we need
to keep track of the actual cost as we go.

A* Search
Define a new function for priority

The function f is an estimate of the “cheapest” solution that passes through n.

A* search is exactly the same as UCS, except using f(n) instead of g(n) for the
priority.

Result: as long as h obeys some simple properties, we can prove that A* search
returns the optimal result!

Simple A* example
[R(273), F(275)]
[S]

[F(275), P(277)]
[S,R]

[P(277), B(310)]
[S,R,F]

[B(278), B(310)]
[S,R,F,P]

Returned Solution:
[S->R, R->P, P->B]

State h(State)

Bucharest 0

Fagaras 176

Pitesti 100

Rimnicu
Vilcea

193

Sibiu 253Note: we add B first from F, but we
don’t expand B until after P. This is
why we need to be careful about
when we stop searching

Admissibility - Don’t overestimate
Let’s define the “true cost to go” as h*

We say a heuristic is admissible if it never overestimates

Notice: UCS is A* with h(n) = 0 (null heuristic)

Admissibility - examples
Which of these are admissible heuristics?

Vacuum world:
h(n) = “number of cells that are not marked clean”

Romania:
h(n) = “Straight Line Distance to Bucharest”

Pac-Man (eating all the pellets):
h(n) = “Sum of the Manhattan distance to remaining pellets”

Admissibility - Pac-Man

Moving towards one pellet may put you closer to another pellet!

Consistency - the triangle inequality

Any consistent heuristic is also admissible, but
not all admissible heuristics are consistent.

Consistency is important for ensuring that we
don’t have to backtrack to handle shortcuts as
we will soon see

n n’

G

a

c(n,a,n’)

h(n) h(n’)

A B

C

AC <= AB+BC

A* optimality - proof sketch (1)
First, note that the sequence of f(ni) values along any path (S, n1, n2, ..., nk) is
non-decreasing

A* optimality - proof sketch (2)
1. Call the optimal path from the start to the goal p*
2. Assume that A* returns a sub-optimal path (p’ > p*) as the solution
3. In order for A* to return p’ as the solution, it must reach and expand the goal

through p’ first.
4. Since A* expands nodes by f() priority ordering, the last leg of p’ must have

been at the front of the priority queue
5. This means f(p’) < f(every other sub-path found so far) (abuse of notation)
6. But by admissibility and consistency, every sub-path of p’ must have f() values

less than the shortest path. Contradiction!

A* properties
With a consistent heuristic, the following is true about A* (Where C* is the path
cost of the optimal solution)

● A* expands all nodes with f(n)<C*
● A* may expand some nodes with f(n) = C*
● A* will not expand any nodes with f(n) > C*
● A* is complete if all step costs are positive and the branching factor is finite
● A* is optimally efficient among algorithms that expand all nodes with f(n)<C*

So, is A* with consistent heuristics the answer? Why not always use h(n)=0?

Effect of the heuristic on explored states
h(n) “shapes” the search towards the best solution.

Heuristic design - preview

Sometimes, admissible/consistent heuristics just expand too many states

We can still perform A* with an inadmissible heuristic, we just can’t guarantee
optimality anymore

Not all admissible/consistent heuristics are created equal: Making a good choice
for the heuristic has strong implications for the running time and memory usage,
because it impacts the effective branching factor.

Summary and preview
Wrapping up

● A* is like UCS, except using f(n) = g(n)+h(n) for the priority
● In order for A* to be optimal, we need h(n) to have certain properties:
● Admissibility: never over estimates true cost to goal
● Consistency: h(n) <= c(n,a,n’)+h(n’) (triangle inequality)
● The choice of the heuristic has a big impact on performance

Next time

● Full Romania example
● Dealing with inconsistent heuristics
● Heuristic design techniques

