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Linear regression for nonlinear functions
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Basis function expansion
This generalizes to any set of transforming 
functions we care to use.

Our hypothesis class is now functions that are 
linear combinations of a set of basis functions.

The 𝜃 which minimizes the loss can be found the 
same way, just by replacing X with 𝜱
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Choices for 𝜙
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A problem - knowing when to stop
Adding more and more complicated functions to 
𝜙 lets the model get more complex.

In general: 
The more complex the model, the better at fitting 
the training data, but the more likely it is to not 
generalize

We will return to this, but for the moment we 
need a way to penalize the model for being too 
complex.

Enter regularization
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Regularization
AKA: weight decay, ridge regression, Tikhonov regularization

If a component of 𝜃 is small, that feature has a small impact on the output

If all the components of 𝜃 are large, we’re letting individual features have a big 
impact on the output.

Add a term to the loss that penalizes 𝜃 for having large magnitude
∑𝜃j

2 = 𝜃T𝜃



Regularization - solving for 𝜃



Regularization - example
Fitting a degree 14 polynomial
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Regularization - notes
Alternatives?

● Instead of making most weights small, make some of them actually = 0 (L0, 
aka model selection)

● No closed form solution, but efficient optimizations exist (LASSO, L1 
approximation ∑|𝜃i| = ||𝜃||1)

A general approach to keeping models from becoming too complex: add terms to 
the loss function that measure the complexity of the model

Question: How big should 𝜆 be?
Transformed the question from “How should we design {𝜙} to not be too complex, 
but complex enough” to “what’s the right value for this one parameter”



Gradient Descent
We needed an iterative method when the exact solution isn’t tractable

Algorithm Idea:
Take a small step in the direction down the gradient, loop until done

𝜃(0)𝜃(k)
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Gradient Descent - Algorithm

The learning rate 𝛼 controls how far along the gradient to move at each step

Works for just about any objective function as long as we can find the gradient

Since the loss for Linear Regression is convex, gradient descent will find the 
global optima



Gradient Descent converging
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Gradient Descent diverging
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(thanks to Kanad Khanna for the visualization)
14

http://www.youtube.com/watch?v=-JkE8U62aN0


Gradient Descent - notes
● Need to be able to compute the gradient! (LASSO?)
● Slows down once close to minima. Fix: adaptive learning rate
● Can get caught in local optima. Fix: momentum
● Variant - Stochastic Gradient Descent: update using single data point 

sampled from the training dataset
○ Can escape local optima
○ Can speed up convergence if the gradient is “noisy”
○ Each iteration is faster to compute

● “Faster” optimization methods exist (for some classes of objective functions)
○ Newton’s, BFGS (second order methods)
○ Conjugate Gradient (requires sym. pos. def. matrix)

Learning rate is important!
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Summary and preview
Wrapping up

● We can use linear regression to fit nonlinear data with basis function 
expansion

● We can use regularization to combat overfitting when the hypothesis class is 
complex

● Gradient Descent is an iterative optimization method that takes a small step 
in the direction of the gradient each iteration

For next time

● A new model class: Neural Networks
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