
Filtering
CS 580

Intro to Artificial Intelligence

Reasoning with uncertainty and time
We’ve seen how Bayes Nets can help us reason about state that we can’t directly
measure: Apply Bayes Rule so we can use probabilities we can measure

How can we leverage Bayes Nets to reason about how state may change over
time?

In partially observable environments, what’s the most likely sequence of states
given a sequence of sensor readings?

2

Compare: diagnosis vs management
Diabetes

Test 1 Test 2 Test 3

Blood Sugar
Now

Reading
Now

Blood Sugar
1 hour ago

Reading
1hr ago

Blood Sugar
1hr future

Reading
1hr future

…

…

Repeating pattern:

3

Example: G5:6 (glucose readings between time 5
and 6)

Temporal Random Variables - Notation
Unobserved random variable at time t

Observed random variable at time t

Time series from a to b, a set of random
variables

BS4

G4

BS5

G5

BS6

G6

BS7

G7

4

Markov Assumptions
First Order Markov Assumption
Xt depends on Xt-1 only

Sensor Markov Assumption
Et depends on Xt only

Raint-1 Raint Raint+1 Raint-1 Raint Raint+1

Umbt-1 Umbt Umbt+1

5

Probability of rain today given rain yesterday Prior probability of rainProbability of seeing an umbrella
given raining

Defining necessary probabilities

p(Rt=T | Rt-1) p(Rt=F | Rt-1)

Rt-1 = T 0.7 0.3

Rt-1 = F 0.3 0.7

p(Ut=T|Rt) p(Ut=F|Rt)

Rt=T 0.9 0.1

Rt=F 0.2 0.8

p(R0=T) p(R0=F)

0.5 0.5

Transition Model Sensor Model Prior

R1 R2 R3

U1 U2 U3

R0 …

6

What can we learn using this framework?
Two types of questions we can ask:

● Filtering (estimation): probability of current state given sequence of evidence

● Prediction: distribution over future states

7

Exact filtering (1)

Notation:
p(et) := p(Et=et)

Split (e1:t+1) into (et+1, e1:t)

Bayes Rule

Sensor Markov
assumption

Marginalize to introduce Xt

8

Exact filtering (2)
Def. of cond. prob.

First order Markov
assumption

Recurrence!

Sensor Model Transition Model Base case: Prior
p(X0|e1:0) = p(X0)

9

Exact filtering (3)
Let’s rewrite this probability so we can compute it iteratively as the agent moves
forward in time, rather than recursively.

New, updated belief
(for each state)

Belief at the previous
time stepFor finite state space, can represent

belief(Xt=si) as a table (like we did for utility)

10

Exact filtering algorithm
def exact_filtering_agent(sensor_model, transition_model, prior):

belief = {s:prior(s) for s in states}
while (not_done()):

new_belief = apply_transition_model(transition_model,belief)
e = get_sensors()
if not(e is None):

new_belief = apply_sensor_model(sensor_model,e,new_belief)
belief = new_belief

def apply_transition_model(transition_model,belief):
new_belief = {}
for s in states:

for s_prime in states:
new_belief[s_prime] = belief[s]*transition_model(s,s_prime)

return new_belief.normalize()

def apply_sensor_model(sensor_model,e,belief):
new_belief = {}
for s in states:

new_belief[s] = belief[s]*sensor_model(s,e)
return new_belief.normalize()

Note: we can decouple the
transition model and sensor
model

Note: double for loop, pick
order that’s most efficient!

11

Exact filtering example (1)
Transition model
80% intended, 20% perp.

Prior
Uniform, 25% each

Wall sensor
Detects presence or absence of wall with 90%
accuracy:
p(E=‘LU’ | X=s1) = 0.9*0.9*0.9*0.9
p(E=’D’ | X=s4) = 0.9*0.1*0.1*0.1

s1 s4

s2 s3

12

Exact filtering example (2)
Initialize belief

belief(si)

s1 0.25

s2 0.25

s3 0.25

s4 0.25

s1 s4

s2 s3

13

Exact filtering (3)
Took action: RIGHT. Apply transition model

b(s1) = p(s1|s1)b(s1) + p(s1|s2)b(s2) + p(s1|s3)b(s3)
 + p(s1|s4)b(s4)
 = (0.1)*(0.25)+(0.1)*(0.25)+0+0 = 0.05

b(s2) = p(s2|s1)b(s1) + p(s2|s2)b(s2) + p(s2|s3)b(s3)
 + p(s2|s4)b(s4) = 0.05

b(s3) = p(s3|s1)b(s1) + p(s3|s2)b(s2) + p(s3|s3)b(s3)
 + p(s3|s4)b(s4)
 = 0+(0.8)*(0.25)+(0.9)*(0.25) + (0.1)*(0.25)
 = 0.45
b(s4) = 0.45

Apply transition model

s1 s4

s2 s3

belief(si)

s1 0.05

s2 0.05

s3 0.45

s4 0.45

14

Exact filtering (4)
Received sensor reading “U” (one north wall).
Apply sensor model

b(s1) = 𝛼 p(“U”|s1)*b(s1) = (.93*.1)*(0.05)=.0036
b(s2) = 𝛼 p(“U”|s2)*b(s2) = (.9*.13)*(0.05)=4.5x10-5

b(s3) = 𝛼 p(“U”|s3)*b(s3) = (.9*.13)*(0.45)=4x10-4

b(s4) = 𝛼 p(“U”|s4)*b(s4) = (.93*.1)*(0.45)=.0328

𝛼 = 1/0.0368

Apply sensor model

s1 s4

s2 s3

belief(si)

s1 0.0978

s2 0.0012

s3 0.0107

s4 0.8913

15

Exact filtering notes
Exact filtering can be expensive!

What if our state space is continuous? Sums become integrals!

It would be nice if we could come up with an approximation where we could trade
off speed and accuracy with a single parameter

A new approach: Particle Filter

16

Complexity and accuracy are proportional to the number of samples we use!

We need two things to do this:
A way to apply the transition model to particles (samples)
A way to apply the sensor model to particles

Estimating distributions with samples

s1 s4

s2 s3

p(Xt=si) = # samples in si / # samples

17

Particle filter algorithm
Initialize N particles from prior
For each timestep t

For each particle pi
Sample pi from transition model

Re-weight pi according to sensor model

Re-sample particles according to weight

Notation:
x ~ p(X) : “Sample x from the distribution of X”

18

Sampling from transition model
Easy, even for continuous distributions! Just “simulate” a transition:

Example: robot has small angular error when moving forward

New
particle

Original Action
taken

Noise

19

Particle Filter example (1)
Initialize

● Number of particles: 12
● Prior probability: uniform
● p(0) = [s1,s1,s1,s2,s2,s2,s3,s3,s3,s4,s4,s4]

s1 s4

s2 s3

Part 1 2 3 4 5 6 7 8 9 10 11 12

State s1 s1 s1 s2 s2 s2 s3 s3 s3 s4 s4 s4

Weight .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083

20

Particle Filter example (2)
Apply transition model: Took action “RIGHT”

s1 s4

s2 s3

s1 s4

s2 s3

Part 1 2 3 4 5 6 7 8 9 10 11 12

State s1 s4 s4 s2 s3 s3 s3 s3 s3 s4 s4 s3

Weight .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083

Transition model:
80% go in intended direction, 20% perpendicular

21

Particle Filter example (3)
Apply sensor model
Received sensor reading: “One wall to the north”

p(e|s1) = p(e|s4) = 0.93*0.1 = 0.073

p(e|s2) = p(e|s3) = 0.13*0.9 = 0.0009

s1 s4

s2 s3

Sensor model:
p(e|si) = (0.9)^(# of correct walls) * (0.1)^(# of incorrect walls)

Part 1 2 3 4 5 6 7 8 9 10 11 12

State s1 s4 s4 s2 s3 s3 s3 s3 s3 s4 s4 s3

Weight .073 .073 .073 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 .073 .073 9e-4

22

Particle Filter example (4)
Resample according to weights
Normalize: 𝛼 = 2.7…
Compute Cumulative Distribution Function (CDF):
CDF[i] = w1+w2+…+wi
For number of particles to generate:

Pick random number p between 0 and 1
Find first bin in CDF such that p<CDF[i]
Copy particle i into new set of particles

s1 s4

s2 s3

Part 1 2 3 4 5 6 7 8 9 10 11 12

State s1 s1 s1 s1 s3 s4 s4 s4 s4 s4 s4 s4

Weight .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083

s1 s4

s2 s3

23

Particle Filter notes
Can break into two steps like exact filtering and have multiple sensor readings per
move, or multiple moves between sensor readings

● Apply transition model when actions occur
● Apply sensor model when sensors arrive

Edge cases

● All particles in one state
● All particles have weight 0

Solution? Re-initialize, or “inject” random particles at each timestep

24

Summary and preview
Wrapping up

● We can use Bayes nets to think about how state random variables are related
through time, and to answer questions about the current state (filtering) and
future states (prediction)

● Exact Filtering: iteratively update a belief vector/array using transition
model and sensor model

● Particle Filtering: iteratively update a set of particles as an estimate of
belief

Up next: Smoothing and Viterbi

25

