
Support Vector Machines
CS 580

Intro to Artificial Intelligence



The “large margin” principle
Another basis for picking the “best” hypothesis

Assume the data is linearly separable, which 
line is the best choice for the decision 
boundary?

If we believe our training data has some 
inherent noise, we should pick the line that’s as 
far away from the data as possible. That way 
any small errors in the x’s are less likely to 
move from one side of the line to the other.

This is the large margin principle: The “best” 
hypothesis is the one that maximizes the 
distance to the training data



Geometry of the decision boundary
For now: binary classification with labels {-1,1}

We can describe a linear decision boundary with 
a vector, w, that’s perpendicular to it:

This hypothesis projects the point x onto the 
vector w and checks to see what side of the 
boundary it falls on

w
x

wTx

wTx+w0>0wTx+w0<0

wTx+w0=0



Geometry of the margin

x(i)

wTx(i)

x(j) wTx(j)

r

w

Let x(i) be the point closest to the boundary in 
the positive region, and x(j) be closest in the 
negative region, then the margin, r, is

Note: If we re-scaled the data (multiplied each x 
by some constant), this wouldn’t change the 
direction of w. 



Finding the maximum margin - primal
We want to find w that maximizes the margin

Where the constraints make sure all positive and negative examples end up on 
the correct side of the line



Finding the maximum margin - dual
This is a quadratic optimization problem. Solvers exist, and it can be shown that 
solving the following problem is equivalent

And w is computed as
To find w0, first compute w, then 
plug in a labeled training point to 
the constraint y(i)(wTx(i)+w0)>=1



Support Vectors
What does 𝛼(i) actually mean?

Note: only some of the data points have an 
impact on the decision boundary. 

Points that are far away can not change which 
w gives the best margin

Points that lie right at the edge of the margin do 
determine w

We call these points support vectors, and they 
are the only points with 𝛼(i)>0



Soft Margin Classifier
For most data, we cannot enforce the constraint

We can modify the optimization to include slack 
variables

But this only works well if the data is “mostly 
linearly separable” with a small number of 
outliers



Data that’s really not linearly separable



Transforming data to make it be linearly separable

x = [x1,x2] 𝜙() 𝜙(x) = [(x1)
2,(x2)

2,√2(x1*x2) ] 



Using basis functions for SVM
Basis function expansion let us use linear regression on nonlinear data

We can use a similar trick to use linear SVMs on non-linearly separable data

In general, by transforming data into higher dimensions, it is more likely that 
some linear boundary exists

Notice: the only place where 𝜙 
appears is in this inner product



Inner products and kernels
Instead of computing 𝜙(x) for all the data points, what if we had a function that 
could compute the inner product of 𝜙(x)T𝜙(x’) directly?

We’ll call this kind of function a kernel, and we can swap it in wherever we see an 
inner product of the transformed input, 𝜙(x): 



We can find “kernelized” versions of lots of 
different methods.

“Kernelized” basis function expansion

Nadaraya-Watson kernel regression

Kernels everywhere
And there are many different kernels functions 
we could use

Polynomial kernel

Gaussian/RBF kernel

Sigmoidal kernel



What makes a valid kernel?
Not all functions are kernels! Loosely, a valid 
kernel function has to “behave like an inner 
product.”

One of the simplest technical definitions: The 
Gram matrix, K, has to be positive semidefinite 
for any set of x(i)

Once we have some kernels, we can construct 
new ones with the following rules:



Why are support vectors important?
We can show that the “kernelized” SVM 
classifier has the form

Notice
For any of the training data points that are not 
support vectors, we don’t have to compute 
(potentially costly) kernel function!

SVMs are sometimes called sparse kernel 
methods for this reason



Summary and preview
Wrapping up

● Support Vector Machines are a type of classifier that’s based on the 
maximum margin principle

● The parameters of the model are found using quadratic programming 
methods, which additionally determine which training samples are necessary 
for finding the boundary, the so called “support vectors”

● We can handle non-linearly separable data by using kernels


