
    
 

 
 

 

Project 4a: Decision Trees 
 

Introduction 

 

This project is intended to familiarize you with one of the standard approaches to classification 
problems, decision trees. You will code up decision tree learning and then apply it to several 
relatively simple problems.  

This project has two parts. In the first part, you will code up decision tree learning and test it on 
various data sets. In the second part, you will provide a writeup discussing the results. 

This project will be done in Python. Your submission should consist of your code and your 
writeup. For the code, it should all be in DecisionTree.py; follow the standard submission 
convention you used in projects 1-3. For the writeup, publish it as a pdf document and include it 
with your submission as a separate file.  



Files you will edit 

● DecisionTree.py Your entire decision tree implementation will be within this file  

Files you will not edit 

● DataInterface.py* Functions for converting the data sets into python data 

structures  

● Testing.py Helper functions for learning a tree and testing it on test examples 

● autograder.py Acustom autograder to check your code with 

(*May be modified and submitted for extra credit) 

Evaluation:Your code will be autograded for technical correctness, using the same 
autograder and test cases you are provided with. Please do not change the names of 
any provided functions or classes within the code, or you will wreak havoc on the 
autograder. You should ensure your code passes all the test cases before submitting 
the solution, as we will not give any points for a question if not all the test cases for it 
pass. However, the correctness of your implementation -- not the autograder's 
judgements -- will be the final judge of your score. Even if your code passes the 
autograder, we reserve the right to check it for mistakes in implementation, though this 
should only be a problem if your code takes too long or you disregarded 
announcements regarding the project. The short answer grading guidelines are 
explained below.  

Academic Dishonesty:We will be checking your code against other submissions in the 
class for logical redundancy. If you copy someone else's code and submit it with minor 
changes, we will know. These cheat detectors are quite hard to fool, so please don't try. 
We trust you all to submit your own work only; please don't let us down. If you do, we 
will pursue the strongest consequences available to us. 

 

Getting Help: You are not alone! If you find yourself stuck on something, contact the 
course staff for help either during Office Hours or over email/piazza. We want these 
projects to be rewarding and instructional, not frustrating and demoralizing. But, we 
don't know when or how to help unless you ask.  



Decision Tree Learning Implementation 
A classification problem is a problem where you classify instances into classes based on their 
features. For example, given the features length_gt_5, has_teeth, big_and_scary, and flies, we 
classify into monster or not_monster. 

length_gt_5=y, has_teeth=y, big_and_scary=y, flies=n → monster 
length_gt_5=n, has_teeth=n, big_and_scary=y, flies=y → monster  
length_gt_5=n, has_teeth=n, big_and_scary=n, flies=n → not_monster  
length_gt_5=n, has_teeth=n, big_and_scary=y, flies=n → not_monster  
... 

Other possible classification problems would include "Should I date this person or not?" or "Is 
this a good investment?" or "Animal or not?" 

A classification problem consists of four variables: 

● training-examples:  an ordered list of training examples, where each example is an 
n- dimensional vector 

● training-classes: a corresponding ordered list of classification labels, where each label is 
t (in the class) or nil (not in the class). These should be in the exact same order as the 
training examples. 

● test-examples: similar to training-examples in form, but used strictly for testing purposes. 
● test-classes: similar to training-classes in form, but used to evaluate the results of running 

the algorithm on test-examples 

In this project, we have decided to store sets of examples as lists of dictionaries. Each 
dictionary in a given list corresponds to an example vector in a given dataset and the class 
associated with it. For example, the monster dataset above will be stored as the following list: 
  
[{‘length_gt_5’:’n’ , ’has_teeth’:’n’ , ’big_and_scary’:’y’ , ’flies’:’y’ , ‘monster’:’y’}, 
 {‘length_gt_5’:’n’ , ’has_teeth’:’n’ , ’big_and_scary’:’n’ , ’flies’:’n’ , ‘monster’:’y’}, 
 {‘length_gt_5’:’n’ , ’has_teeth’:’n’ , ’big_and_scary’:’y’ , ’flies’:’n’ , ‘monster’:’n’}, ...] 

Though it is typical to store examples as lists/vectors, this form of storage also retains the 
names of all features. Note that this form of storage enables non-boolean features and classes, 
which your algorithm will need to support. An example of a dataset with multivalued features 
and classes is the cars dataset: 

  



[{'maint': 'low', 'persons': 'more', 'lug_boot': 'small', 'safety': 'low', 'doors': '5more', 'buying': 'low', 
'label’:unacc',},  
 {'maint' : 'low', 'persons' : 'more', 'lug_boot' : 'small', 'safety': 'med', 'doors': '5more', 'buying': 
'low', 'label’: 'acc'}, 
 {'maint' : 'low','persons' : 'more', 'lug_boot' : 'small', 'safety' : 'high', 'doors' : '5more', 'buying': 
'low', 'label': 'good'}, 
 {'maint' : 'low', 'persons': 'more', 'lug_boot' : 'med', 'safety' : 'low', 'doors' : '5more', 'buying' : 'low', 
'label’: 'unacc',}, ...] 

This, along with the with Connnect4 dataset and two small testing datasets, can all be obtained 
from DataInterface.py. The format and contents of the two real datasets can be found in the 
datasets folder. 

To allow for autograding and ease the difficulty of implementing a full Decision Tree, we have 
prepared a framework of code in DecisionTree.py that has functions that you need to fill in. The 
functions have descriptive comments to specify what their functionality is. So for each question, 
reading those rather than guidelines here will let you know what to code. The questions and 
associated points are as follows: 

Question 1 (2 points): Helper functions 

Implement getMostCommonClass, getPertinentExamples, getClassCounts, and 
getAttributeCounts past the Node and Tree classes in DecisionTree.py in accordance with the 
comments. These will be useful later in implementing the information gain functions, and should 
get you familiar with the format of storing examples as dictionaries. As before, you can run the 
autograder with python autograder.py and can specify -q or -t/--test to check your solutions are 
correct. 

Question 2 (2 points): Entropy functions 

To start with, implement setEntropy, remainder, and infoGain in DecisionTree.py as covered in 
the book. These are covered in chapter 18.3.4 in the book, with setEntropy being analogous to 
H. However, note that the book specified H for a boolean variable, so be sure to follow the 
instructions in the lecture and comments to implement setEntropy for non-boolean variables. 

Question 3 (2 points): gini functions 

Now that you have completed the standard decision tree learning approach, you will implement 
another mechanism for splitting attributes, called the GINI index. The gini index function can be 
used to evaluate the goodness of all the potential split points along all attributes. Consider a 
dataset S consisting of n records, each belonging to one of c classes. The gini index for the set 
S is defined as: 



ini(S)g = 1 − ∑
c

j=1
p2j  

where p is the relative frequency of class j in S. If S is partitioned into two subsets S1 
and S2, the index of the partitioned data can be obtained by: 

ini (S, s) /n ini(S ) /n ini(S )g D c = n1 · g 1 + n2 · g 2  

where n1 and n2 are the number of examples of S1 and S2, respectively, and cs is the 
splitting criterion. More generally, if S is divided into n subsets the equation above is a 
summation from S1 to Sn . Here the attribute with the minimum gini index is chosen as 
the best attribute to split. 

The functions to implement for this question are giniIndex and giniGain - be sure to read 
the comments. 

Question 4 (4 points): Decision Tree Learning 

With all the above functions in place, you are ready to implement the makeSubtrees 
method of DecisionTree.py. Note that the trivial makeTree method is provided to you 
and the implementation of the decision tree construction algorithm is left for you to do in 
the recursive makeSubtrees. This function should return a Node, which is the root node 
of the decision tree for the provided set of examples and attributes. You should follow 
the pseudocode in the book and slides, and have the same base cases. Additional 
means of testing are provided in Testing.py with methods such as testDummySet1. 

Question 5 (2 points): Decision Tree Classification 

With all the above functions in place, you are able to learn the structure of decision 
trees from data, and just need the function for using the learned tree. The classify 
function is in the Tree class, and should be implemented after makeSubtrees since it 
implements the logic for using a tree for classification. This should be a straightforward 
tree traversal implementation, so if you are not sure how to go about this be sure to 
conceptually review Decision Trees. 

  



Analysis  

The analysis should be provided in 1-2 paragraphs of 3-4 sentences each. Please keep it short 
and concise  we primarily care about you displaying understanding of how Decision Trees 
fundamentally work, and will grade based on that. More on grading is explained below. 

Question 6 (4 points): Performance 

Using the method of Testing.py, find and record classification rate and tree size statistics 
regarding the two fake data sets, as well as the Cars and Connect4 datasets. You will need to 
either edit Testing.py or create a new file to call the functions in Testing.py, but all the 
information is provided as soon as you call the functions. 

For each data set, describe why you think the decision tree learning performed as it did in terms 
of accuracy statistics and tree size. Please be specific and justify your claims (ie: if you say 
there was not enough training data for data set X, or the nature of training data made Decision 
Tree learning less effective, what makes you think so?). Note that you can inspect the two fake 
data sets by looking into DataInteface.py and finding the lists that contain them, and that you 
can inspect the real datasets in the datasets folder. To get full credit you should report all the 
information asked for (classification rate and tree size) for each data set, and briefly give some 
justification for why each dataset got the results that it did regarding both the classification rate 
and tree size. 

Question 7 (4 points): Applications 

For each of the two real datasets that come with this project, explain how their Decision Trees 
could be used along with other software (another algorithm, or a user-facing GUI) to solve some 
problem. For the cars dataset, you should suggest a similar dataset and analyze how having a 
classifier such as a Decision Tree could be useful to something like a website selling products. 
For the Connect4 dataset, suggest some way in which the classifier could be incorporated with 
one of the past algorithms we have learned about to make a better Connect4 playing bot. You 
should discuss both for several sentences, and concretely describe what the dataset could 
contain and how the corresponding Decision Tree could be used to solve the given problem. 

Extra Credit 

Question 8 (2 points): Novel Dataset 

Explore the UCI Machine Learning Repository or other ML datasets found online, and select a 
new dataset to try your Decision Tree with. Write a method in DataInterface.py called 
getExtraCreditDataset that is akin to the other get methods we wrote. Submit an additional file 
called runExtraCredit.py that creates a decision tree on that dataset and prints out tree size and 



classification rate. If the dataset is too large to include with your submission, include a comment 
as to where it can be downloaded from. Answer question 6 and 7 (analyzing performance and 
applicability) for this dataset, and submit your DataInterface.py in addition to DecisionTree.py for 
the option of extra credit. Additionally, submit the dataset files that you answered these 
questions for. 

Question 9 (2 points): Chi-Squared Pruning 

In DecisionTree.py, implement the makePrunedSubtrees method. This should be just like your 
makeSubtrees method, except that it include chisquared pruning as described in section 18.3.5 
(pages 705-706) in your text.You should compute the Dev(X) sum after choosing the best 
attribute to split by. You should use chisqprob from scipy.stats.stats in order to convert this sum 
to the p value that can be compared to the q threshold. This means you need to install scipy in 
order to be able to check your answer. There are additional test cases for this question, which 
you can run with python autograder.py -q q9. 

Submission 

Zip only the files you altered for this assignment as a .zip and submit it on Canvas before the 
due date. Include your analysis in the pdf. 


