
 

Project 4: Neural Nets  

Introduction    

In this project you will be implementing neural nets, and in particular the most common algorithm 
for learning the correct weights for a neural net from examples. Code structure is provided for a 
Perceptron and a multi layer NeuralNet class, and you are responsible for filling in some missing 
functions in each of these classes. This includes writing code for the feed forward processing of 
input, as well as the backward propagation algorithm to update network weights. 
 

Files you will edit 

NeuralNet.py Your entire Neural Net implementation will be within this file 

Files you will not edit 

NeuralNetUtil.py Functions for converting the datasets into python data structures 
Testing.py Helper functions for learning a neural net from data 
autograder.py A custom autograder to check your code with 

 
Evaluation: Your code will be autograded for technical correctness, using the same autograder and test 
cases you are provided with. Please do not change the names of any provided functions or classes within 
the code, or you will wreak havoc on the autograder. You should ensure your code passes all the test 
cases before submitting the solution, as we will not give any points for a question if not all the test cases 
for it pass. However, the correctness of your implementation    not the autograder's judgements    will 
be the final judge of your score.  Even if your code passes the autograder, we reserve the right to check 
it for mistakes in implementation, though this should only be a problem if your code takes too long or 



you disregarded announcements regarding the project. The short answer grading guidelines are 
explained below. 
 
Academic Dishonesty: We will be checking your code against other submissions in the class for logical 
redundancy.  If you copy someone else's code and submit it with minor changes, we will know. These 
cheat detectors are quite hard to fool, so please don't try. We trust you all to submit your own work only; 
please  don't let us down. If you do, we will pursue the strongest consequences available to us.  
 
Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff for 
help either during Office Hours or over email/piazza. We want these projects to be rewarding and 
instructional, not frustrating and demoralizing. But, we don't know when or how to help unless you ask. 

Neural Network Learning Implementation 
 
This project follows the same terminology as in the lectures and Ch 18.7 in your book.  Neural 
networks are composed of nodes called perceptrons, as well as input units. Every perceptron has 
inputs with associated weights, and from this it produces an output based on its activation 
function. Thus you will be implementing a feed forward multi layer neural net. 
 
We will be training the neural nets to be classifiers. Inputs will be in the form of sets of examples 
that have an assignment of values to various features and corresponding class values. The
datasets used for this project include a cars dataset and a dataset of pen handwriting values. 
For the latter, numeric data from images is stored to train a classifier of handwritten digits.

 
Instead of converting the stored examples into dictionaries as in the last project, each example 
will be parsed into lists of numeric values. Each possible classification for each class corresponds 
to a single output perceptron, so in addition to the list of inputs each example includes the list of 
outputs for the output layer. The Pen dataset has 16 inputs and 10 output perceptrons, since 
there are 16 different features for the handwriting recognition data input and 10 possible 
classifications of the input (corresponding to the values 0 9). In the case of a discrete -valued 
examples such as in the cars dataset, distinct arbitrary numeric values are assigned to every 
value of every feature. 
 
The code we provide you has the methods for parsing the datasets into python data structures, 
and the beginning of the Perceptron and NeuralNet classes. A Perceptron merely stores an input 
size and weights for all the inputs, as well as methods for computing the output and error given 
an input. An object of the NeuralNet class stores lists of Perceptrons and has methods for 
computing the output of an entire network and updating the network via back propagation 
learning. The network consists of inputs (just a list of inputs that is a parameter to feed forward), 



an output layer, and 0 or more hidden layers. Although the structure and initialization is written, all 
the actual functionality will be implemented by you. 
 

Question 1 (2 points): Feed Forward  
 
Implement sigmoid and sigmoidActivation in the Perceptron class. Then, implement feedForward in 
the NeuralNet class. Be sure to heed the comments   in particular, don’t forget to add a 1 to the input 
list for the bias input. You now have a Neural Net classifier! However, the weights are still 
randomized so it is rather useless… 

 
Question 2 (2 points): Weight Update 
 
Implement sigmoidDeriv, sigmoidActivationDeriv, and updateWeights in Perceptron according to the 
equation in the  book. Note that delta is an input to updateWeights, and will be the appropriate delta 
value regardless of whether the Perceptron is in the output or a hidden layer; its computation will be 
implemented later in backPropLearning.   
 

Question 3 (4 points): Back Propagation Learning  
 
Implement backPropLearning in NeuralNet using the methods you implemented in questions 1 
and 2. Note that this is a single iteration of the back propagation learning, and the loop to perform 
the full learning algorithm will be implemented in the next question. You can largely follow the 
pseudocode in your book, though note that you should not be updating weights until you have 
computed the error delta  values that use those delta values. You code does not have to exactly 
follow our suggestions in the comments, so long as it correctly implements back propagation. To 
debug, you may use the following: 
 
For test backprop0.test, the deltas for the first iteration are:  
 
[[0.030793495980775746, 0.015482381603395969,  0.011581614293905421, 
 0.004449919337742824,  0.02164433012587241, 0.02929895427882054, 
0.009128354470904964,  0.002752718694772222, 0.0136716072376759, 
 0.015406354991598608, 0.013100536741508734, 0.0041637660666657295, 
 0.00017176192932002172, 0.010111421606106267, 0.036790975475881824, 
0.007334760193359876,  0.00698074822965782,  0.029598447675293165, 
 0.010824328898999185, 0.03097345080247739,  0.007777081314307609, 
0.0023536881454502725,  0.01345707648774709,  0.007920771403715898], 
[ 0.026000590890107898,  0.06031387251323732,  0.03958313495848832, 
 0.07355044647726003,  0.06973954192905674,  0.10235871158610363, 
0.13274639952200898,  0.11272791158412912,  0.0627102923404577, 
 0.03676930932503297]] 



 
 
 

Question 4 (4 points): Back Propagation Learning Loop 

 
Lastly, implement buildNeuralNet to actually train a good neural network classifier. The stopping 
condition for training should be the average weight modification of all edges going below the 
passed in threshold, or the iteration going above the maximum number of iterations also passed 
in. See the comments in the code for more detail. You should now have a working neural net 
classifier! If your solutions are right, then calling testPenData in Testing.py should result in output 
similar (since we are starting from random weights, the numbers will not be exactly the same) to 
this: 
 
Starting training at time 01:17:58.806009 with 16 inputs, 10 outputs, hidden layers [24], size of 
training set 7494, and size of test set 3498 
. . . . . . . . . ! on iteration 10; training error 0.006085 and weight change 0.000272 
. . . . . . . . . ! on iteration 20; training error 0.004340 and weight change 0.000188 
. . . . . . . . . ! on iteration 30; training error 0.003674 and weight change 0.000144 
. . . . . . . . . ! on iteration 40; training error 0.003342 and weight change 0.000119 
. . . . . . . . . ! on iteration 50; training error 0.003142 and weight change 0.000102 
. . . . . . . . . ! on iteration 60; training error 0.003006 and weight change 0.000091 
. . . . . . . . . ! on iteration 70; training error 0.002902 and weight change 0.000083 
. . . ! on iteration 74; training error 0.002865 and weight change 0.000080 
Finished after 74 iterations at time 01:25:13.266676 with training error 0.002865 and weight 
change 0.000080 
Feed Forward Test correctly classified 3118, incorrectly classified 380, test accuracy 0.891366 

Analysis 
The analysis should be short and concise   we primarily care that you report the performance 
statistics asked for accurately.  
 

Question 5 (4 points): Learning With Restarts 
 
Neural Networks as we have implemented them work by gradient descent from a random starting 
point. This is a form of local search, so we have the typical local search problem of landing in a 
local maxima that may or may not be close to the global maxima. As in other forms of local 
search, the the solution to this is random restarts. Run 5 iterations of testPenData and 
testCarData with default parameters and report the max, average, and standard deviation of the 
accuracy. As in the past project, you should write your own code that uses the functions of 
Testing.py and NeuralNet.py to do this. 
 



Question 6 (4 points): Varying The Hidden Layer 
 
Vary the amount of perceptrons in the hidden layer from 0 to 40 inclusive in increments of 5, and 
get the max, average, and standard deviation of 5 runs of testPenData (you’ll want just let your 
computer run this one for a while) and testCarData for each number of perceptrons. Report the 
results in a table. Additionally, produce a learning curve with the number of hidden layer 
perceptrons being the independent variable and the average accuracy being the dependent 
variable. Briefly discuss any notable trends you noticed related to increasing the size of the 
hidden layer has on your neural net. You should write your own code that uses the functions of 
Testing.py and NeuralNet.py to do this. 

Extra Credit  
 

Question 7 (2 points Extra Credit): Learning XOR 
 
As you’ve learned in class, adding the hidden layer allows Neural Nets to learn non linear 
functions such as xor. To show this in effect, produce the set of examples needed to train a 
Neural Net to compute a 2 variable xor function. Train a neural net without a hidden layer with it 
and report the behavior. Then, run it on neural nets starting with 1 perceptron in the hidden layer 
and increasing until you get a neural net that works well. Are the results what you expected? 
 

Question 8 (2 points Extra Credit): Novel Dataset 
 
Explore the UCI Machine Learning Repository or other ML datasets found online, and select a 
new dataset to try your Neural Network with. Write a method in NeuralNetUtil.py called 
buildExamplesFromExtraData that is akin to the other get methods we wrote. Answer question 5 
for this dataset, and submit your NeuralNetUtil.py in addition to NeuralNet.py for the option of 
extra credit. Also include your code to set up training and a README on how to run this code. 
 

Submission 

Zip only the files you altered for this assignment as a .zip or .tar.gz and submit it on T Square before 
the due date. Include your analysis in the pdf. You have a strict one hour window after the due date 
to handle any last minute technical issues, after which you will not be able to submit and receive a 0 
for the project. 
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