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Abstract

Agent-based simulation is a valuable tool for
biologists studying animal behavior, however
constructing models for simulation is often
a time-consuming manual task. Predictive
probabilistic graphical models have shown
success in classifying behavior, but are not
easily translated into models that can be
executed in a multi-agent simulation. We
propose a novel behavior representation and
method for learning executable models suit-
able for execution in simulation. Results on
synthetic and real video from lab experiments
are given.

1. Introduction

One concrete motivation for this work has been to en-
able the work of biologists that study collective behav-
ior through agent-based models. Agent-based models
have been successful in analyzing the behavior of so-
cial insects such as ants and bees (Pratt et al., 2005;
List et al., 2009), although currently such models are
constructed after manual processing of video of the
collective behavior of the animal. This manual pro-
cess usually consists of frame-by-frame annotation of
video of the animals in question and statistical analysis
of the resulting data. Our approach aims to automate
these two tasks; the first by using multi-target track-
ing to obtain tracks of individual animals from video,
and the second by learning an executable model from
those tracks. This workflow is outlined in Figure 1.
This paper focuses on the second of these in develop-
ing a novel behavior representation and an algorithm
for learning behaviors from tracking data.
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We define our problem as:

• Given:
1. Tracks of animals interacting in their envi-

ronment.

2. A sensor model for the animals.

3. A set of boolean triggers which are important
to switching behavioral states.

• Assume: The animal’s behavior can be modeled
as a Markov Process.

• Construct: An executable model of behavior
suitable for running in a multi-agent simulation.

It’s important to note that our goal is the construction
of an executable behavior, and as such we will focus
more on the structure of the learned behaviors and
aggregate measures of their performance in simulation
than on the predictive capabilities of our model.

2. Related Work

Learning models of behavior from video is a broad
and well studied area of research, even in the rela-
tively specific domain of social insects. Fruit fly be-
havior has been studied using techniques from machine
vision and machine learning to automatically create
ethograms of observed fly behavior (Branson et al.,
2009; Dankert et al., 2009). Researchers have success-
fully used switching linear dynamic systems (SLDS)
to model and predict the distinct states in the “honey
bee waggle dance”, using MCMC sampling for approx-
imate inference (Oh et al., 2005). Egerstedt et al.
present a method for tracking ants and reconstruct-
ing minimal control programs of their movements from
video (2005).

Much of this previous work has focused on behav-
ior recognition, however, and it is not necessarily
straightforward to construct an executable behavior
directly from learned parameters of the model. Some
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researchers from the robotics community have used
HMMs for action reproduction, but the resulting tra-
jectories must be post-processed to ensure smoothness
and continuity constraints (Sugiura & Iwahashi, 2007;
2008; Kulić et al., 2008; Inamura et al., 2004). Meila
& Jordan introduce an early framework for learning
fine motion control for a robot arm using Expecta-
tion Maximization (EM) over a Markov Mixture of
Experts, but only present results in a recognition task
(1996).

Our approach, much like the behavior recognition
focused work above, models behavior as a type of
Markov Process, but it applies a more specific proba-
bilistic graphical model so that the learned parameters
can be used directly to construct an executable behav-
ior. The model we use is based on the Input/Output
HMM (IOHMM) (Bengio & Frasconi, 1995), which in-
troduces a new input variable to the standard HMM
model. Balch et al. present a framework for using
IOHMMs to learn executable behavior, but their work
separates the learning task in to two parts where the
low level behaviors are learned separately from the
transitions between them (2006). Our method allows
for simultaneous learning of both the behaviors and
the transition structure.

3. Modeling behavior

We take the approach outlined by Yang et al. for rep-
resenting agent behavior (2012). The behavior of an
agent can be described by a graph in which each node
represents a state the agent can be in. Each edge rep-
resents a transition from one state to another, and the
label for that edge corresponds to a boolean clause
that must be true for the agent to make that transi-
tion. For a given state, the agent’s output is a direct
function of its sensors: the agent has no “memory”
outside of the state structure. This graphical repre-
sentation of behavior is quite similar to the ethograms
that biologists use to describe observed behavior.
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Figure 1. Workflow for automatically constructing exe-
cutable behaviors from observation.
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Figure 2. A simple foraging behavior. An agent will re-
peatedly forage until it acquires food, then return to the
nest.

Figure 2 gives an example of how one might graphically
represent a simple foraging behavior for an ant. The
ant remains in the foraging and returning states until
it finds food or is near the nest respectively. While in
the foraging behavior, the ant might head towards the
nearest food item within it’s sensor range, and while
returning it might head in the direction of the nest. In
both of these states the ant might try to avoid walls
and other ants. This can be naturally extended to in-
clude a probabilistic transition function rather than a
deterministic one. We can formally define a behavior
under this model as a triple (π,Ai,j(τ), Bi(y)), where
πi is the probability of starting in state i, Ai,j(τ) is
the probability of transitioning from state i to j given
the logical clause τ , and Bi(y) is the output function
which gives an agent’s response to a given input vector
y for state i. A specific behavior uses a finite number
of boolean variables, k, in the clauses that control tran-
sitions between the N states, so we can represent A as
a N×N×2k table, and τ is the index of a specific con-
figuration of the boolean variables. The input y is a
real-valued vector in the feature space computed from
the agent’s sensors, and as mentioned earlier Bi(y) is
a function strictly of y.

If we consider sequences of triples consisting of in-
puts, binary switches, and outputs st = 〈yt, τt, zt〉, t =
1 . . . T , of an agent following behaviors of this form,
we can construct a graphical model which describes
the probability of any particular sequence along with
the unobserved state variables, as shown in Figure 3.
Specifically, the action zt (“turn θ radians left”, “go
forward”) that the agent takes at time t depends on it’s
sensors yt (vectors in the direction of the nest/food),
and its current state xt (“forage”, “return”). The
state at the next time step xt+1 is dependent on both
the previous state xt, and state of the boolean vari-
ables τ (“have food” and “near nest”). This model
allows us to recast the problem of learning a behavior
into finding the set of parameters which maximizes the
likelihood of the data under those parameters, which
in standard HMMs can be solved using Baum-Welch
(Baum et al., 1970). Section 4 introduces an iterative
parameter updating procedure similar to the Baum-
Welch update equations.
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Figure 3. A Binary-switched IOHMM (BIOHMM). Ob-
served variables are shaded

This is a natural extension of the classic HMM model
which makes explicit the dependance relationships spe-
cific to this domain which derive from the fact that an
agent is reacting to its environment. The IOHMM
presented in (Bengio & Frasconi, 1995) also exploited
this relationship, but that model made no distinction
between the parts of the input that influenced state
transitions and the parts that effected the state output
(Figure 4). Our modification splits the input variable
in two, and separates the variables that are important
to state switching from those that are important to
how the agent responds in a given state. It is impor-
tant to note that our model is not any more expressive
than an IOHMM. Once trained, however, our represen-
tation allows us to more easily construct the types of
executable models described earlier.

4. Learning

Learning a behavior Θ = (π,Ai,j(τ), Bi(y)) given a
sequence of observations S = {st = 〈yt, τt, zt〉|t =
1 . . . T} can be accomplished through Expectation
Maximization in a way similar to how Baum-Welch
solves the analogous problem for HMMs.

First, the likelihood for a given sequence in the com-
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Figure 4. An IOHMM. Observed variables are shaded

plete data case can be written as follows:

P (S,X | Θ) = πx0 ·
∏
t

Axt,xt+1(τt) · bxt+1(zt,yt+1)

where bi(z,y) = P (z | B,y) is the probability that the
output function for state i produced output z for an in-
put y. Details on estimating bi(z,y) will be discussed
later.

The likelihood of a specific (complete data) sequence is
just the product of the probability of the initial state,
the probability of each state transition, and the prob-
ability of each observed output. The differences be-
tween a BIOHMM and a standard HMM only come in
to play with variables that are observed in the train-
ing data, so the changes in forward-backward and the
Baum-Welch updates are intuitive, and involve con-
ditioning on the input and switching variables1. The
forward variable, α, is computed by:

αt(i) = P (xt = i | s1:t)
α1(i) = πi · bi(z0,y0)

αt+1(j) =

[∑
i

αt(i)Ai,j(τt)

]
bj(zt+1,yt+1)

The backward variable, β:

βt(i) = P (xt = i | st:T )

βT (i) = 1

βt(i) =
∑
j

Ai,j(τt)bj(zt+1,yt+1)βt+1(j)

1In this section we use the standard notation for EM on
HMMs. For definitions and details on the original Baum-
Welch we refer the reader to (Rabiner, 1989)
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The smoothed posterior marginal, γ:

γt(i) = P (xt = i | s1:T )

=
αt(i)βt(i)∑
j αt(j)βt(j)

(1)

For convenience in computing the update to the tran-
sition function, we also define the ξ variable:

ξt(i, j) = P (xt = i, xt+1 = j | s1:T )

=
αt(i)Ai,j(τt)bj(zt+1,yt+1)βt+1(j)∑

i

∑
j αt(i)Ai,j(τt)bj(zt+1,yt+1)βt+1(j)

(2)

There is no difference between BIOHMMs and HMMs
that effects the initial state distribution π, which leaves
its update equation unchanged:

π′
i = γ0(i) (3)

Since the transition matrix is now conditioned on the
switching variable, the update must be modified to
only account for transitions under a specific τ :

A′
i,j(τ) =

∑
t ξt(i, j)δt(τ)∑
t γt(i)δt(τ)

(4)

where δt(τ) is the indicator function for switching vari-
able τ at time t.

4.1. Output function

One of the key distinctions made between this work
and the initial IOHMM model is how the output func-
tion is modeled. In the original IOHMM a neural net-
work was used to model the output function, and back
propagation was used to calculate the update as part
of the EM step. In contrast, we have so far not re-
stricted the form of the output function. In order to
compute the updates and variables described above,
some estimate of the probability that the output func-
tion for a given state produced a given output for a
given input is necessary. In order to avoid making as-
sumptions about the form of the output function we
chose to use weighted kernel density estimation to pro-
vide this estimate.

Given n samples xi of a random variable with an un-
known probability density function, a KDE estimates
the density at a query point x by taking the weighted
average of the kernel applied to the difference between
each sample and the query point:

f̂(x) =
1

h
∑

i wi

∑
i

wiK

(
x− xi

h

)
(5)

where K is a kernel function K : Rd → R and h is the
bandwidth parameter.

By using the observed input/output 〈yt, zt〉 pairs from
the training sequences as samples, we can construct a
KDE estimate of the output function for each state,
and updating these estimates in the learning procedure
becomes a matter of assigning appropriate weights to
each sample:

wi
t =

γt(i)∑
t′ γt′(i)

(6)

This updates the weight of the tth sample point for
output density estimate bi for state i to be propor-
tional to the probability of being in that state when
that output was generated. In the special case where∑′

t γt′(i) = 0 we set wi
t = 0 in equation 6 since, by

construction, this means that γt(i) = 0. Similarly, be-
cause all weights are non-negative, if

∑
i wi = 0 in

equation 5, then we set f̂(x) = 0. This ensures that
the output probability density is bounded.

Given equations 3, 4, and 6, we can iteratively com-
pute an improved Θ. Given a specific Θ, the transition
function A and initial state distribution π can be used
directly in an executable behavior, and the weighted
samples from each state’s estimated output density
function can be used as input to a non-parametric
function approximation technique to produce an out-
put function. We use a modified form of k-NN for
this, where the output B̂i for a given input y is sam-
pled randomly from the set of outputs of the k nearest
neighbors of y according to their weight wi

t.

5. Experiments

Since our motivation is to provide executable mod-
els, and the capabilities of hidden Markov models in
behavior recognition are well documented in previous
literature, our experiments focus on the performance
of the generated behavior.

For our work, it is important that an agent acting
under a learned behavior actually behaves like the an-
imal that generated the training data. To test this we
constructed a simulation of foraging ants, trained an
executable model from traces of the simulation, ran
simulations using the learned behavior, and compared
several aggregate measures of behavior between the
original simulation, the learned behavior, and a ran-
dom wandering behavior for validation.

The foraging simulation consisted of 10 ants and 10
stationary food items in a rectangular arena. The ants
were programmed to follow the behavior shown in Fig-
ure 2. While in the foraging state, the ant would head
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Figure 5. The simulation environment. Ants are the larger
transparent circles, food items are the smaller filled circles

towards the nearest food item within range, and wan-
der randomly until it came within range of a food item.
While returning, the ant would head in the direction of
the nest. If the ant got close enough to touch a food
item in the foraging state, it would pick it up and
transition to the return state. Similarly, when the ant
returned to the nest while in the return state, it would
drop any food it was carrying and transition back to
the foraging state. In both states, the ant would try to
avoid running into walls and other ants. Transitions
in each of these cases were deterministic, and the ants
always started in the foraging state. Sensor ranges
were set to three body-lengths (25.8mm). Figure 5 is
a screenshot of the simulation at initialization.

To collect training data, we recorded traces from the
hand-coded behavior of each ant’s output velocity
(z), the 4 sensor vectors (y) — obstacle sensor, ant
sensor, food sensor and direction-to-home sensor —
and the two binary switching sensors “have food” and
“near nest” (τ) at each simulation step. A model with
two states was then trained using these traces as the
observation sequences as described in section 4. The
initial values for π and A were chosen randomly and
each 〈yt, zt〉 was randomly assigned to one of the out-
put functions. For the kernel density estimator we
used a bandwidth h = 1 and a Gaussian kernel Σ = I.
After converging, the learned parameters were used to
construct an executable behavior, and a new simula-
tion was run with 10 food items and 10 ants using the

Table 1. Foraging transition function. HF and NN stand
for the boolean variables have food and near nest.

¬hf ¬nn ¬hf nn
return forage return forage

return — — — —
forage 0.0 1.0 0.0 1.0

hf ¬nn hf nn
return forage return forage

return 1.0 0.0 0.0 1.0
forage — — — —

learned behavior.

As a baseline comparison, we also implemented a ran-
dom behavior, where the ants simply moved in a ran-
dom direction at each time step. Whenever an ant
moved over a food item it automatically picked it up
unless the ant was already carrying food, and when-
ever it moved over the nest while carrying a food item
it dropped the item off.

6. Results

The synthetic foraging behavior is simple enough that
the learned parameters can be compared directly with
the model that produced the training data. Figure
6 shows how the transition function converges to the
correct values given in Table 1. Figure 7 provides a
visualization of a slice of the output function at itera-
tions 1 and 40. The slice illustrated in this graph fixes
the value of the direction-to-home sensor to directly
in front of the ant, with the other sensors set to zero,
and plots the probability of the output angular veloc-
ity for the return state. Initially, the probability of any
particular turn is fairly uniform, but after several it-
erations, the ant has learned to preferentially move in
the direction of the nest (zero angular velocity) when
returning food.

Table 2 lists the aggregate data collected in the three
simulations. Simulations were run for 120 simulated
seconds (≈ 4000 steps), and were repeated 20 times;
mean values are reported with 95% confidence inter-
vals. Return time is the average time (in seconds)
between when a food item is first picked up, and when
it is dropped off near the nest. Distance form near-
est ant is the average distance (in millimeters) be-
tween each ant and the nearest other ant within sens-
ing range. Distance from nearest wall is the av-
erage distance between each ant and the nearest wall
within sensing range. Food collected per run is
the average number of food items returned to the nest
by all ants throughout the course of a single run. These
particular statistics were chosen to highlight the as-
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Figure 6. Evolution of the transition function parameters over time. Transitions that occur in the hand-coded model
converge to their correct values given in Table 1.

Figure 7. Evolution of the output function parameters over time. At successive iterations, the probability of producing
an output in the direction of the nest increases.
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Table 2. Aggregate statistics for hand-coded foraging.

Hand-coded Learned Random

Return time 15.5± 1.1(s) 34.5± 3.9(s) 80.7± 8.5(s)
Distance from nearest ant 19.6± 0.02(mm) 14.36± 0.03(mm) 12.3± 0.03(mm)
Distance from nearest wall 17.6± 0.04(mm) 7.24± 0.02(mm) 5.5± 0.01(mm)
Food collected per run 9.45± 0.26 6.25± 0.6 0.9± 0.35

Figure 8. One frame of a video of A. cockerelli in an empty
arena

pects of the foraging behavior that a learned behavior
should capture such as preferentially heading toward
the nest after acquiring food and avoiding walls and
other ants.

These results illustrate that the executable behav-
ior constructed from the learned parameters produces
similar aggregate statistics to the original behavior.
While the return time is longer in the learned be-
havior, it is still much shorter than the time it takes
a randomly wandering ant, which suggests the learned
behavior is trying to head towards the nest after pick-
ing up a food item. Similarly, the fact that the av-
erage distance between nearby ants and obstacles is
larger for the learned behavior than the random be-
havior suggests that the ant is attempting to avoid
collisions. The food collected per run suggests
that the learned behavior produces aggregate behavior
that is very similar to the hand-coded foraging ants.

6.1. Preliminary results for live animals

We captured video in the lab of a group of
Aphaenogaster cockerelli in an empty arena. Figure 8
shows a frame from this video. The ants in the video
were tracked using Multi-Iterative Closest Point track-
ing (Feldman et al., 2012) which provides the x, y, and
θ of each ant in each frame. These tracks are then pro-
cessed to create egocentric ant sensor values (including
binary switches) paired with changes in (x, y, θ), and
combined into sequences.

Table 3. Aggregate statistics for wandering ants.

Real Learned

Distance from
nearest ant 15.11± 0.73(mm) 17.5± 0.03(mm)

Time spent
near wall 3.1± 1.3(s) 2.9± 0.3(s)

Time spent
near ants 1.6± 0.5(s) 1.3± 0.08(s)

Time spent
near nest 2.2± 1.5(s) 3.8± 0.7(s)

Using this training data, we were able to learn a two-
state model of ant wandering behavior and compare
the learned behavior to the real ants. While there is
no “ground truth” model to compare to, Table 3 lists
several aggregate statistics of both the real and learned
ants, and illustrates how similar the learned and actual
behaviors are. These kinds of interaction statistics are
useful in answering important questions about how the
animals in question behave socially, such as whether
ants have a preferred encounter rate (Gordon et al.,
1993).

7. Conclusion

We have described a new method for representing and
learning executable models of animal behavior. Re-
sults on learning a synthetic foraging behavior have
shown that this approach can successfully construct
executable behaviors which produce similar aggregate
statistics to the original behavior. We have illustrated
how the entire workflow of creating executable mod-
els of behavior for agent-based simulation studies of
animal behavior can be automated.

There are many avenues for extending this work in
the future. As is the case with EM in HMMs, our
learning algorithm is only locally optimal, and tech-
niques for avoiding sub-optima are crucial for the high-
dimensional domain which we work within. These in-
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clude pre-processing in order to find better initial pa-
rameter selections, modifications to the iterative up-
dates to detect and escape local optima, as well as in-
corporating features of global optimization techniques
such as evolutionary computation.
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