Sampling Beats Fixed Estimate Predictors for Cloning Stochastic Behavior in Multiagent Systems

Brian Hrolenok¹ Byron Boots¹ Tucker Hybinette Balch¹

¹School of Interactive Computing Georgia Institute of Technology {bhroleno,bboots,tucker}@cc.gatech.edu

Thirty-First AAAI Conference on Artificial Intelligence

Hrolenok, Boots, Balch (Georgia Tech) Sampling Beats Fixed Estimate Predictors

AAAI 2017 1 / 20

Problem Statement

Learning Executable Models of Multiagent Behavior

- Generative model for simulation
- Use ML techniques to handle lots of data

Applications

- Prediction: navigation in crowds
- Modeling: inferring social structures
- Design: swarm search-and-rescue

Focus of this talk: What are the right metrics?

미 / 4 문 / 동 / 4 문 / 9 여

photo credit: Paul Asman and Jill Lenoble

(1) Decide on model class \hat{f} and important features ϕ .

(2) Collect observations of behavior: $D = \{(s_i, b_i)\}$.

(3) Learn $b_i \approx \hat{f}(s_i)$ given D

(4) Given any s_{new} , predict $b_{new} = \hat{f}(s_{new})$.

Hrolenok, Boots, Balch (Georgia Tech) Sampling Beats Fixed Estimate Predictors

AAAI 2017 3 / 20

- (1) Decide on model class \hat{f} and important features ϕ .
- (2) Collect observations of behavior: $D = \{(s_i, b_i)\}.$
- (3) Learn $b_i \approx f(s_i)$ given D
- (4) Given any s_{new} , predict $b_{new} = \hat{f}(s_{new})$.

- (1) Decide on model class \hat{f} and important features ϕ .
- (2) Collect observations of behavior: $D = \{(s_i, b_i)\}.$
- (3) Learn $b_i \approx \hat{f}(s_i)$ given D

(4) Given any s_{new} , predict $b_{new} = f(s_{new})$.

- (1) Decide on model class \hat{f} and important features ϕ .
- (2) Collect observations of behavior: $D = \{(s_i, b_i)\}.$
- (3) Learn $b_i \approx \hat{f}(s_i)$ given D
- (4) Given any s_{new} , predict $b_{new} = \hat{f}(s_{new})$.

A simple deterministic model of fish schooling

- (1) Linear Model: $\hat{f}(s_i) = \langle \mathbf{W}, \phi(s_i) \rangle$.
- (2) Multitarget tracking on video $\rightarrow D$.
- (3) Ordinary least-squares: $\mathbf{W} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{b}$.
- (4) Simulate: compute agent observation $\phi(s)$, agent action $\hat{f}(s)$, updated state s'. Repeat.

Stochastic behaviors

What if f is not deterministic?

- Additive Noise: $b_i = f(s_i) + \varepsilon_i$
- Assume $\varepsilon_i \sim N(0, \sigma)$
- Minimize loss/risk \rightarrow predict central tendency

What if it's not noise?

- Inherent in behavior
- Recast:

$$b_i \sim f(s_i) = N(\langle W, \phi(s) \rangle, I\sigma)$$

• Strong assumption!

AAAI 2017 5 / 20

An example stochastic behavior

Realistic behaviors can look like this. What should \hat{f} do?

- Pick the mean?
- Sample under the distribution!

<u>Predicting</u> left or right optimally is still bad (error $\approx 50\%$). Focus on modeling <u>distribution</u> of behavior (without losing too much on prediction).

Modeling the distribution of behavior

How can we model an unknown density? Kernel Conditional Density Estimation

$$\hat{f}(b|s) = \frac{\sum K_{h_b}(b, b_i) K_{h_{\phi}}(\phi(s), \phi(s_i))}{\sum K_{h_{\phi}}(\phi(s), \phi(s_i))}$$

- Simple idea: place "bumps" at all the data points and sum them up
- Kernel (K_{h_b},K_{h_ϕ}) and bandwidth (h_b,h_ϕ) determine shape

How can we sample from \hat{f} quickly?

• Quick approximation: Use *k*NN and sample from the nearest neighbors.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Metrics

How should we measure performance? Commonly used metrics:

- RMSE: average error over all points in the test set
- End-point: average difference in final position for all sequences in the test set

These measure <u>predictive</u> performance. Does this capture everything we care about?

Experiments

Three experiments

- (1) Synthetic deterministic behavior (baseline)
- (2) Synthetic stochastic behavior (known behavior function, no noise)
- (3) Real fish (unknown behavior function, unknown noise distribution)

EL NOR

Experimental setup

Cloning schooling behavior in fish

(1) Model class for \hat{f} : Lin-Reg, kNN-Reg, kNN-Sample, Features: next slide.

(2) Tracks of fish:
$$b_i = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{d\theta}{dt}\right)$$

- (3) Train OLS, put data in kNN data structure
- (4) Run trained models in simulator

A simple, linear, synthetic behavior

Based on Reynolds' "Boids" model

- Each component is a weighted sum of vectors
- Final behavior is a weighted sum of components
- Model is linear in its features (good candidate for Lin-Reg)
- Produces realistic looking flocking/schooling behavior

Given the individual components as the features ϕ , \widehat{W} found by Lin-Reg closely matches the actual generating model.

Experiment 1: Performance

- Split data into training/testing on sequence boundaries
- RMSE: error averaged at every point in the test set
- end-point: average difference between final position in test set

sequences

▲ 돌 ▶ 볼 ■ 의 ۹ (~ AAAI 2017 12 / 20

< 🗇 🕨 <

∃ >

Experiment 2: Synthetic stochastic behavior

Same Boids model as before, but this time add a random amount to forward velocity

$$\begin{split} f(x) &= \langle W, \phi(x) \rangle + (\varepsilon, 0, 0) \\ \varepsilon &\sim f_{exp}(x; \lambda) = \lambda e^{-\lambda x} \end{split}$$

Need a way to measure the similarity of the distribution of $\frac{dx}{dt}$ from f(s) (generating) and $\hat{f}(s)$ (model).

- Qualitative: histograms.
- Quantitative: K-L divergence.

$$D_{KL}(h_f||h_{\hat{f}}) = \sum_i h_f(i) \log \frac{h_f(i)}{h_{\hat{f}}(i)}$$

Experiment 2: Histograms

- Blue: Generating behavior
- Green: Model behavior

Hrolenok, Boots, Balch (Georgia Tech) Sampling Beats Fixed Estimate Predictors

AAAI 2017 14 / 20

Experiment 2: Performance

kNN-Sample performs worse than Lin-Reg but comparably with kNN-Reg on RMSE and end-point error, but is much better on K-L divergence.

-

Experiment 3: Real fish

What about real fish?

Hrolenok, Boots, Balch (Georgia Tech) Sampling Beats Fixed Estimate Predictors

AAAI 2017 16 / 20

三日 のへで

< ロト < 回 ト < 注 ト < 注</p>

Experiment 3: Histograms

Hrolenok, Boots, Balch (Georgia Tech) Sampling Beats Fixed Estimate Predictors

AAAI 2017 17 / 20

= 990

Experiment 3: Performance

Mixed results. Lin-Reg seems to do best on RMSE, but is outperformed by kNN-Reg on end-point, while kNN-Sample again wins on K-L divergence.

Wrapping up

Conclusions

- For stochastic behaviors, we want to match <u>distributions</u>. Matching behavior in expectation is not enough.
- It's possible to do better at matching distributions without introducing too much predictive error

Future Work

- Fast techniques for optimizing the bandwidths and sampling under the full KCDE (slower than kNN, better approximations)
- Use divergence to construct a loss function directly, then optimize

See project page for links to this talk, more images and videos, and code: http://www.cc.gatech.edu/~bhroleno/sampling-aaai2017/

Thanks!

Thank you!

AAAI 2017 20 / 20

KCDE as KNN

Sampling under \hat{f}

Constant for given features

- Ignore the denominator, same for all \boldsymbol{b}
- Let $K_{h_b}(\cdot, b_i)$ be impulse at each b_i
- Let $K_{h_{\phi}}(\cdot,\phi(s_i))$ be uniform truncated at the $k{\rm th}~\phi(s_i)$

Same as picking uniformly at random from among the k nearest neighbors of $\phi(s)!$

ELE DOG

Features

$$\phi_i(s) = \frac{1}{n} \sum_{j \neq i} \exp\left\{\frac{d_j^2(s)}{2\sigma_j^2}\right\} v_{i,j}(s)$$

where $d_j, \sigma_j, v_{i,j}$:

Component	$v_{i,j}$	σ_i		
$v_{\text{sep},j}$	Away from agent $j (-(x_j - x))$	Near, 1-2 body lengths (0.1)		
$v_{\mathrm{ori},j}$	Heading of agent j (θ_j)	Somewhat near, 2-3 body lengths (0.2)		
$v_{\mathrm{coh},j}$	Towards agent j $((x_j - x))$	Majority of school (1.0)		
$v_{\text{sep},j}$	Away from obstacle j	Short, within 1 body length (0.05)		

三日 のへで

<ロト <回ト < 回ト < 回ト

Experiment 1: Synthetic deterministic behavior

Boids produces flocking/schooling behavior with a linear combination of simple local rules. Let $f(\phi(s)) = \langle W, \phi(x) \rangle$, with W on the left and \widehat{W} on the right below

Generating	ż	ý	$\dot{\theta}$	Recovered	ż	\dot{y}	$\dot{\theta}$
$\phi_{\operatorname{sep}_x}$	-1.0	0.0	0.0	$\phi_{\operatorname{sep}_x}$	-0.9998	0.0	0.0015
ϕ_{sep_y}	0.0	0.0	-20.0	ϕ_{sep_y}	-5.1436×10^{-4}	0.0	-19.9995
ϕ_{ori_x}	0.0	0.0	0.0	ϕ_{ori_x}	-1.3071×10^{-5}	0.0	-9.3309×10^{-6}
ϕ_{ori_y}	0.0	0.0	0.1	ϕ_{ori_y}	1.1432×10^{-7}	0.0	0.0998
ϕ_{coh_x}	0.0	0.0	0.0	ϕ_{coh_x}	-3.3333×10^{-6}	0.0	2.8271×10^{-4}
ϕ_{\cosh_y}	0.0	0.0	0.8	ϕ_{coh_y}	3.1213×10^{-5}	0.0	0.8004
ϕ_{obs_x}	-1.0	0.0	0.0	ϕ_{obs_x}	-0.9753	0.0	-0.3991
ϕ_{obs_y}	0.0	0.0	-40.0	ϕ_{obs_y}	4.6335×10^{-4}	0.0	-38.7059
bias	0.0125	0.0	0.0	bias	0.01250	0.0	-3.5565×10^{-5}

Since Boids is actually a linear model, linear regression can recover the parameters. $||W-\widehat{W}||_F < 0.894$

ELE DOG