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Problem Statement

Learning Executable Models of
Multiagent Behavior

• Generative model for simulation

• Use ML techniques to handle lots of
data

Applications

• Prediction: navigation in crowds

• Modeling: inferring social structures

• Design: swarm search-and-rescue

Focus of this talk: What are the right
metrics?
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Using observational data to clone behavior

(1) Decide on model class f̂ and important features φ.

(2) Collect observations of behavior: D = {(si, bi)}.
(3) Learn bi ≈ f̂(si) given D

(4) Given any snew, predict bnew = f̂(snew).
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A simple deterministic model of fish schooling

(1) Linear Model: f̂(si) = 〈W, φ(si)〉.
(2) Multitarget tracking on video → D.

(3) Ordinary least-squares: W = (ΦTΦ)−1ΦTb.

(4) Simulate: compute agent observation φ(s), agent action f̂(s),
updated state s′. Repeat.
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Stochastic behaviors

What if f is not deterministic?

• Additive Noise: bi = f(si) + εi

• Assume εi ∼ N(0, σ)

• Minimize loss/risk → predict
central tendency

What if it’s not noise?

• Inherent in behavior

• Recast:
bi ∼ f(si) = N(〈W,φ(s)〉, Iσ)

• Strong assumption!
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An example stochastic behavior

Realistic behaviors can look like this. What should f̂ do?

• Pick the mean?

• Sample under the distribution!

Predicting left or right optimally is still bad (error ≈ 50%).
Focus on modeling distribution of behavior (without losing too much on
prediction).
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Modeling the distribution of behavior

How can we model an unknown density?
Kernel Conditional Density Estimation

f̂(b|s) =

∑
Khb(b, bi)Khφ(φ(s), φ(si))∑

Khφ(φ(s), φ(si))

• Simple idea: place “bumps” at all the data points and sum them up

• Kernel (Khb ,Khφ) and bandwidth (hb, hφ) determine shape

How can we sample from f̂ quickly?

• Quick approximation: Use kNN and sample from the nearest
neighbors.
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Metrics

How should we measure performance? Commonly used metrics:

• RMSE: average error over all points in the test set

• End-point: average difference in final position for all sequences in the
test set

These measure predictive performance. Does this capture everything we
care about?
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Experiments

Three experiments

(1) Synthetic deterministic behavior (baseline)

(2) Synthetic stochastic behavior (known behavior function, no noise)

(3) Real fish (unknown behavior function, unknown noise distribution)
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Experimental setup

Cloning schooling behavior in fish

(1) Model class for f̂ : Lin-Reg, kNN-Reg, kNN-Sample, Features: next
slide.

(2) Tracks of fish: bi =
(
dx
dt ,

dy
dt ,

dθ
dt

)
(3) Train OLS, put data in kNN data structure

(4) Run trained models in simulator

Hrolenok, Boots, Balch (Georgia Tech) Sampling Beats Fixed Estimate Predictors AAAI 2017 10 / 20



A simple, linear, synthetic behavior

Based on Reynolds’ “Boids” model

• Each component is a weighted sum of vectors

• Final behavior is a weighted sum of components

• Model is linear in its features (good candidate for Lin-Reg)

• Produces realistic looking flocking/schooling behavior

Given the individual components as the features φ, Ŵ found by Lin-Reg
closely matches the actual generating model.
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Experiment 1: Performance

Predictor RMSE end-point

Lin-Reg 0.0356± 0.0050 0.0023± 0.0006

kNN-Reg 5.9675± 0.3665 0.0070± 0.0021

kNN-Sample 4.4097± 0.3328 0.0069± 0.0020

• Split data into training/testing on sequence boundaries
• RMSE: error averaged at every point in the test set
• end-point: average difference between final position in test set

sequences

Lin-Reg clearly outperforms both kNN methods, as expected
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Experiment 2: Synthetic stochastic behavior

Same Boids model as before, but this time add a random amount to
forward velocity

f(x) = 〈W,φ(x)〉+ (ε, 0, 0)

ε ∼ fexp(x;λ) = λe−λx

Need a way to measure the similarity of the distribution of dx
dt from f(s)

(generating) and f̂(s) (model).

• Qualitative: histograms.

• Quantitative: K-L divergence.

DKL(hf ||hf̂ ) =
∑
i

hf (i) log
hf (i)

hf̂ (i)
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Experiment 2: Histograms

Distributions of dx
dt on the test set

Lin-Reg kNN-Reg kNN-Sample

• Blue: Generating behavior

• Green: Model behavior
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Experiment 2: Performance

Predictor RMSE end-point K-L divergence

Lin-Reg 6.1099± 0.0361 0.0067± 0.0009 482.6036± 0.7310

kNN-Reg 13.5425± 0.4549 0.0150± 0.0017 51.1153± 12.3740

kNN Sample 15.1933± 0.4574 0.0154± 0.0014 0.0465± 0.0282

kNN-Sample performs worse than Lin-Reg but comparably with kNN-Reg
on RMSE and end-point error, but is much better on K-L divergence.
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Experiment 3: Real fish

What about real fish?
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Experiment 3: Histograms

Lin-Reg kNN-Reg kNN-Sample
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Experiment 3: Performance

Predictor RMSE end-point K-L divergence

Lin-Reg 308.6853± 22.4447 0.2164± 0.0148 1.5865± 0.1894

kNN-Reg 375.9885± 24.2010 0.1877± 0.0156 1.0020± 0.5021

kNN Sample 570.9620± 29.3125 0.2136± 0.0160 0.2957± 0.2497

Mixed results. Lin-Reg seems to do best on RMSE, but is outperformed by
kNN-Reg on end-point, while kNN-Sample again wins on K-L divergence.
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Wrapping up

Conclusions

• For stochastic behaviors, we want to match distributions. Matching
behavior in expectation is not enough.

• It’s possible to do better at matching distributions without
introducing too much predictive error

Future Work

• Fast techniques for optimizing the bandwidths and sampling under
the full KCDE (slower than kNN, better approximations)

• Use divergence to construct a loss function directly, then optimize

See project page for links to this talk, more images and videos, and code:
http://www.cc.gatech.edu/~bhroleno/sampling-aaai2017/
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Thanks!

Thank you!
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KCDE as KNN

Sampling under f̂

• Ignore the denominator, same for all b

• Let Khb(·, bi) be impulse at each bi

• Let Khφ(·, φ(si)) be uniform truncated at the kth φ(si)

Same as picking uniformly at random from among the k nearest neighbors
of φ(s)!
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Features

φi(s) =
1

n

∑
j 6=i

exp

{
d2j (s)

2σ2j

}
vi,j(s)

where dj , σj , vi,j :

Component vi,j σi
vsep,j Away from agent j (−(xj − x)) Near, 1-2 body lengths (0.1)

vori,j Heading of agent j (θj) Somewhat near, 2-3 body lengths (0.2)

vcoh,j Towards agent j ((xj − x)) Majority of school (1.0)

vsep,j Away from obstacle j Short, within 1 body length (0.05)
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Experiment 1: Synthetic deterministic behavior

Boids produces flocking/schooling behavior with a linear combination of

simple local rules. Let f(φ(s)) = 〈W,φ(x)〉, with W on the left and Ŵ on
the right below

Generating ẋ ẏ θ̇

φsepx −1.0 0.0 0.0
φsepy 0.0 0.0 −20.0

φorix 0.0 0.0 0.0
φoriy 0.0 0.0 0.1

φcohx 0.0 0.0 0.0
φcohy 0.0 0.0 0.8

φobsx −1.0 0.0 0.0
φobsy 0.0 0.0 −40.0

bias 0.0125 0.0 0.0

Recovered ẋ ẏ θ̇

φsepx −0.9998 0.0 0.0015
φsepy −5.1436× 10−4 0.0 −19.9995

φorix −1.3071× 10−5 0.0 −9.3309× 10−6

φoriy 1.1432× 10−7 0.0 0.0998

φcohx −3.3333× 10−6 0.0 2.8271× 10−4

φcohy 3.1213× 10−5 0.0 0.8004

φobsx −0.9753 0.0 −0.3991
φobsy 4.6335× 10−4 0.0 −38.7059

bias 0.01250 0.0 −3.5565× 10−5

Since Boids is actually a linear model, linear regression can recover the
parameters. ||W − Ŵ ||F < 0.894
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