
Inferring Social Structure of Animal Groups From Tracking Data

Brian Hrolenok1, Hanuma Teja Maddali1, Michael Novitzky1, Tucker Balch1 and Kim Wallen2

1Georgia Institute of Technology, Atlanta, GA 30332
2Department of Psychology and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322

Abstract

Inferring the social structures of animal groups from their ob-
served behavior is a non-trivial task usually handled by di-
rect observation. Recent advances in sensing and tracking
technology have enabled the collection of dense spatial data
over long periods of time automatically. The qualitative dif-
ferences between sparse hand-coded data and dense tracking
data necessitate a new approach to inferring the social struc-
ture of the observed animals. We present a framework for
using agent-based simulations to guide our approach to infer-
ring social structure from tracking data collected from a small
group of rhesus macaques over a period of three months. As
part of this framework, we describe a version of the DOM-
WORLD model of dominance interactions in rhesus macaques
that has been modified to include association preference, and
adapted to more closely match the environment where the
monkeys were housed. An exploration of simulation results
reveals important characteristics of the tracking data. The in-
ferred social structures of the tracked monkeys are also pre-
sented.

Introduction
Biologists and psychologists studying the social structures
and dynamics of animals have relied on observation by
trained researchers for the collection and coding of data, as
until recently automated tracking systems have not been able
to provide the accuracy required to recognize events of im-
portance. With the advent of new tracking methods and sub-
sequent improvements in tracking accuracy, it is now pos-
sible to record accurate, high-frequency spatial information
over long periods of time. This qualitatively different kind
of data requires a new approach to analysis.

As the sheer volume of data prohibits manual analysis,
automated methods are necessary both for identifying key
events and inferring relevant characteristics from identified
events. In the rest of this paper, we examine how such au-
tomated methods can be applied in the specific case of in-
ferring the social structure of a group of six rhesus macaque
monkeys given tracking data of their movements over a pe-
riod of three months at a rate of about 30Hz. In the next sec-
tion we will review some related literature on social structure
and agent-based modeling. Following that we will highlight

the specific aspects of social structure we are interested in
recovering, and related behaviors. Next, we lay out our mo-
tivation for using agent-based modeling in this work. After
that we cover the details of our approach to modeling, and
inferring social structure. After that we present some results
using simulated and real data. Finally, we provide some high
level analysis, conclusions, and directions for future work.

Motivation and Related Work
Social structure in primate groups plays an important role
in the health, behavior, and development of group mem-
bers. Wallen (1996) has shown that social structure plays
an important role in the development of behavioral sex dif-
ferences, while Stephens and Wallen (2013) describe how
social status can effect the actual physiological development
of young monkeys. Sapolsky (2005) reviews how social sta-
tus can effect a wide range of health issues, both direct (such
as access to resources), and indirect (stress related diseases).
Being able to automatically infer the social structure of a
group of animals then has wide ranging implications from
maintaining the health and safety of laboratory animals, to
determining the changes in social structure throughout the
course of an experimental protocol.

In order to guide our development of automatic algo-
rithms for inferring social structures from dense tracking
data, we take an agent-based modeling approach to creat-
ing simulations of animal behavior in order to prototype
and refine our methods. The work presented by Yang et al.
(2012) has a similar goal, and provides a principled frame-
work for using agent-based models to further the etholog-
ical study of foraging behaviors, specifically the foraging
behavior of Aphaenogaster cockerelli. Hrolenok and Balch
(2013a) presented work on learning these agent-based mod-
els of ant foraging directly from data using techniques from
machine learning, and later (2013b) fish schooling, although
there the purpose was the automated learning of the behav-
ior model itself, while in this work we are interested in de-
veloping inference techniques using a known model. Our
development of this known model is heavily influenced by
DOMWORLD, introduced by Hemelrijk (2000). Hemelrijk
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Figure 1: An approaching behavior that indicates an associ-
ation preference. The strength of the indicated association
preference is determined by the frequency and length of pe-
riods of close proximity.

presents an agent-based model of dominance in primates
that emerges spatial patterns typically found among certain
types of rhesus macaque troops.

Social Structures in Rhesus Macaques
One of the most intuitive measures of social structure in
primates is association preference, which indicates which
members of the group each individual prefers to spend time
in close proximity to. A graph constructed from association
preferences can illuminate subgroups, key individuals which
connect otherwise disconnected groups (also known as cut
vertices, or articulation points), as well as overall measures
of group structure such as connectedness. The observable
behavior where two or more monkeys spend time within rel-
atively close proximity to one another indicates association
preference. Figure 1 illustrates a grouping behavior that in-
dicates association.

Another important measure of social structure is the dom-
inance hierarchy. Dominance plays important roles both in
interactions between individuals and group dynamics, and
changes in dominance can indicate significant events of in-
terest to the primate researcher. Observed displacement and
withdrawing behaviors such as chasing and fleeing indicate
a dominance relationship. Figure 2 illustrates a withdrawal
behavior that indicates a dominance relationship.

While some association, displacement, or withdrawing
behaviors can only be identified visually, a large number of
them can be detected directly from spatial data, as described
in later sections. In order to obtain this data, we utilized a
3D position tracking system to track the positions of 6 mon-
keys in a 3m x 3m enclosure over a period of three months.
Details of the tracking system are described in Huang et al.
(2012).

The Importance of Agent Based Models
Agent-based modeling and simulation of animals solve two
major problems in the experimental study of animal behav-
ior. First, the data collection cost associated with studies

Figure 2: A withdrawal behavior that indicates an domi-
nance relationship. The strength of the indicated dominance
relationship is determined by the relative frequency with
which each individual withdraws from the other.

done in simulation using high fidelity models is essentially
zero, at least compared to the cost of running experiments
and collecting data on real animal subjects. Using ABMs al-
lows the researcher to run simulated experiments to increase
the confidence of statistical analysis which might otherwise
be less conclusive.

Second, when inferring model parameters directly from
data, one is faced with the task of validation without access
to any “ground truth”. Performing the same inference meth-
ods on simulated data can provide crucial insight into how
those techniques may perform on data from live animals.
Both success and failure can be valuable clues into the capa-
bilities and limitations of the inference methods.

In this work, we focus on using ABMs as a validation tool.
In the next section we introduce an agent-based model of
social interactions between monkeys based on a well studied
simulation with slight modifications relevant to the specific
social measures mentioned previously. Using this ABM, we
can measure quantitatively the effectiveness of our methods
for recovering social structure.

Methodology
To validate our method for inferring social structure, we cre-
ated an agent-based model that incorporates the important
behaviors mentioned previously, parameterized in a way that
allowed us to compare the recovered social structures with
the “ground truth” of the simulation.

Agent Based Behavior Model
Our simulation model, which we call SMALLDOMWORLD
is a modification of the earlier DOMWORLD of Hemelrijk
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Figure 3: The SMALLDOMWORLD model.

(2000). The behavior of the individuals is guided by three
components: a grouping component that draws individuals
together, a dominance component where individuals con-
front each other and the winner chases the loser, and a ran-
dom component where individuals wander about their envi-
ronment at low speed.

In order to match the environmental conditions of the an-
imals being studied, we modified the DOMWORLD model
presented in Hemelrijk (2000) in a number of ways. In the
troop we studied, the dominance relationships were already
stable and established, where as in DOMWORLD, domi-
nance relationships are recalculated after every encounter. In
DOMWORLD, as in our model, dominance encounters only
occur when an individual approaches another within some
distance threshold representing an intrusion into personal
space. In our model, the probability of an intrusion on per-
sonal space resulting in a dominance encounter is given by
the parameter σ where σ = 1.0 indicates a completely stable
dominance structure with no confrontations, and σ = 0.0
ensures that any intrusion results in a confrontation. We
use the same dominance confrontation mechanism as DOM-
WORLD: each individual is given a dominance weight, and
the difference in weights probabilistically determines the
winner of any encounter (see Hemelrijk (2000) for details).

We also introduced some selectivity into the grouping be-
havior. Grouping in DOMWORLD represented a desire by
all individuals in the group to remain within some proximity
of other group members, and so when an individual found it-
self far away from the center of the group, it selected another
visible member of the group uniformly randomly to head to-

Figure 4: Detection of fleeing events.

wards. In our model, each individual has a list of associa-
tion preferences π = 〈π1, π2, . . . , πn〉 which can be thought
of as the distribution over individuals selected for grouping.
This leads to patterns of association which are non-uniform
and give rise to the social structures described earlier. The
list of association preferences can be combined into a single
association preference matrix P with each row correspond-
ing to a single individual’s association preferences.

While these two modifications represent the most im-
portant changes between our model and DOMWORLD, we
also made several changes to accommodate differences in
the modeled environment and simulation engine. DOM-
WORLD’s environment is long-range, discrete, and un-
bounded (toroidal in implementation), whereas our environ-
ment is quite small, continuous, and interactions with the
boundary of the enclosure are common (which necessitated
some kind of obstacle avoidance behaviors). Figure 3 gives
a graphical representation of the behavior model of individ-
uals in SMALLDOMWORLD.

Heuristic Behavior Recognition
In this section we present two heuristic methods for identify-
ing association and dominance behaviors, and how they can
be used to infer the social structures of a group of monkeys.

Time spent within proximity is a straightforward way
to detect behavior which indicates association preference
among group members. By counting the frequency and
length of events where the ego — by which we mean the
individual whose preferences we are trying to determine —
comes within a threshold distance of another individual, and
remains there at low to zero velocity for at least some mini-
mum period of time, we can infer which individuals the ego
prefers to spend time with. If we denote by Eij the time
monkeys i and j spend near each other, then we can fill out
the entries of the association preference matrix P as:

Pij =
Eij∑
k Eik

(1)
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Figure 6: Dominance hierarchy.

While detecting all types of withdrawal events may be dif-
ficult, we can capture a certain subset fairly easily. One type
of withdrawal involves the ego rapid moving directly away
from the target, which we will call fleeing events. We can
detect fleeing events by counting the length and number of
events where the magnitude of the ego’s velocity (v) pro-
jected onto the bearing (θ) between the ego and target is
larger than a threshold (f ), which is shown graphically in
Figure 4. For each pair of individuals we can compute a
dominance measure d as

dAB =
∣∣{eAB | proj−θ(A,B)(vB) > f}

∣∣ (2)

If individual A flees from individual B more frequently
than the opposite (dBA > dAB), we can infer that A is
subordinate to B. In practice, picking f to correspond to
roughly 30 degrees on either side of moving directly away
from the target worked well.

Experiments
We performed four experiments to test our approach, three
using data collected from our simulation model SMALL-
DOMWORLD with different parameterizations of the social
structure, and one using the three months of tracking data
we collected from a small group of animals. Our purpose
in performing the simulation experiments was to measure
how accurately we would be able to recover social struc-
ture, and to characterize scenarios where our method might
not be able to recover social structure. In each of the sim-
ulation experiments we ran ten experiments under the same
parameterization but with different initial configurations and
random seeds.

In the first experiment, we simulated a group of mon-
keys which had a social structure with two disconnected sub-
groups, as shown in Figure 5. The parameterization which
realized this structure had each individual’s association pref-
erence set to 1.0 for other members of its subgroup, and 0.0
otherwise. This way there should be no deliberate prefer-
ence to spend time in proximity of non-subgroup members.
The dominance relationships for this and the two following
simulation experiments was a direct linear relationship with
rank corresponding to ID, as illustrated in Figure 6. The
parameterization that realized this model set the dominance
weight for the least dominant individual to 1.0, with each
individual higher in the chain having twice the dominance

Table 1: Simulation parameters common for all experi-
ments.

Personal distance 0.25m
Near distance 0.8m
Fleeing speed 2.0m/s
Chasing speed 1.0m/s
Grouping speed 0.25m/s
Wander speed 0.12m/s

Table 2: Frobenious error of recovered association prefer-
ence as compared to a randomly generated symmetric, nor-
malized matrix with zero diagonal. Averaged over 10 runs.

Recovered AP Avg. error (std.) random AP
disconnected 0.1744 (0.0014) 0.2408 (0.0326)
neutral hinge 0.1002 (0.0015) 0.1797 (0.0350)
preferred hinge 0.1388 (0.0004) 0.1869 (0.0158)

weight as the next lowest, or (D = 2N−i). The same dom-
inance weights were used in each experiment. Hierarchy
stability was set fairly high (σ = 0.8), so that dominance
interactions were not frequent, but still frequent enough to
reliably detect the dominance hierarchy. Other simulation
parameters are listed in Table 1 and were estimated from
tracking data of live monkeys where appropriate, or taken
from the literature when available.

We were successfully able to consistently recover both
the dominance relationships and association preferences in
this experiment. In order to get a sense of our accuracy, we
compared the recovered association preference matrix with
the ground truth parameterization and with a randomly gen-
erated matrix which was restricted to the same form (row-
normalized, zero-diagonal, symmetric). The results of this
comparison are given in the first row of Table 2, which
shows that our recovered parameters are significantly closer
to the ground truth than random. In order to recover the
graph structure shown in Figure 5, we chose a threshold τ ,
such that edges larger than τ are included in the graph while
those smaller are not. In order to characterize our ability
to pick τ reliably, we examined the distribution of values in
the association preference matrix P , shown in Figure 7. The
distribution is clearly divided into two modes, which indi-
cates that by picking a a threshold between the two modes,
our recovered graph will be stable to noise in the estimation
of association preferences. In our testing, picking

τ =
1

n2

∑
i,j

Pij (3)

where n is the number of agents, worked reliably.
In the second experiment, we modified the association

preferences so that one individual, which we will call the
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(a) Recovered association preference. (b) Ground truth association preference.

Figure 5: Association preferences for the disconnected scenario. The recovered graph (5a) closely matches the actual associ-
ation preferences used in the simulation (5b). Line thickness corresponds to strength of association preference. Association
preferences that fall below the threshold τ (from Equation 3) are not shown.

(a) (b)

Figure 7: Histogram of association preference values recovered (7a) from the disconnected scenario, and (7b) a simulation with
no association preferences. In the second simulation, agents followed the same behavior model, except when choosing to group
where they chose among neighbors without preference. Notice the clear separation into two modes of the recovered association
preferences as compared to the noisy unimodal distribution from the simulation with no preferences.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



(a) Recovered association preference. (b) Ground truth association preference.

Figure 8: Association preferences with hinge node. The recovered graph (8a) closely matches the actual association preferences
used in the simulation (8b). Line thickness corresponds to strength of association preference. Association preferences that fall
below the threshold τ are not shown.

hinge, became an articulation point linking the two sub-
groups, as shown in Figure 8. To do this, we modified the as-
sociation parameters such that the hinge individual preferred
everyone equally, but no one had a preference for them. In
terms of our parameterization, we set the hinge individual’s
row Phj = 1.0,∀j, and its column Pih = 0.0,∀i. Results
are shown in the second row of Figure 2. Again, the re-
covered association preference is significantly closer to the
ground truth than a random association preference, and the
dominance hierarchy was recovered without error.

In the third experiment, we repeated the previous experi-
ment, but also allowed the other individuals to preferentially
group with the hinge individual by setting Pih = 1.0,∀i.
By doing this we highlight a potential scenario where our
method may not be able to recover the social structure ac-
curately, specifically non-transitive association preferences.
Note that our metric for association preference makes no
distinction between individuals which are within proximity
because they chose to be, and those that just happen to be
nearby. For example, if individuals A and B do not have
any preference for association, but each has a high prefer-
ence for associating with a third party C, then regardless of
C’s preferences, A and B will spend a high proportion of
time in proximity of one another. Figure 9 as well as the
third row of Figure 2 illustrate how recovery performance is
degraded in this type of non-transitive scenario.

Finally, for our fourth experiment we applied our methods
to tracking data of live animals. Figures 10 and 11 show the
recovered association preferences and dominance hierarchy
for the entire period the monkeys were tracked. We picked τ
using the same approach described above, although from ex-
amining the distribution of association preferences shown in
Figure 12, we know that this choice will be less stable with
respect to noise. That is, it is more likely that some edges
will be included or excluded from the graph due to small
changes in association preference. The dominance relation-
ship is a linear hierarchy (4, 3, 5, 2, 6, 1) with individual 4
being the most dominant, and individual 1 being the least
dominant. This agrees with the recovered association prefer-
ence, where individuals are shown as preferring to associate
with other individuals at similar ranks in the hierarchy.

Conclusion
We have described a framework for using agent-based mod-
els to explore the characteristics of automated techniques for
analyzing dense spatial data. In the specific case of inferring
the social structure of rhesus macaques from tracking data,
we have illustrated under what conditions simple heuris-
tic analysis can provide accurate reconstructions of social
structure, and provided some insight into the stability and
reliability of our approach using an extension of the DOM-
WORLD agent-based model to guide our analysis.
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(a) Recovered association preference. (b) Ground truth association preference.

Figure 9: Association preferences for the hinge node scenario using non-transitive preferences. The recovered graph (9a) is
missing a link between monkey 6 and monkey 4 in the actual association preference graph (9b). Notice also that the magnitude
of the preferences — shown by the thickness of the edges — is much closer to the threshold value τ . Picking smaller τ results
in additional edges that are not present in the simulated behavior. The non-transitive preferences make it difficult to choose a
stable τ .

Figure 10: Association preferences for live animals. Diame-
ter of the node is determined by the sum of association pref-
erences for that node. Links are included if they are larger
than the mean association preference, and their width is de-
termined by how strong the association preference between
the two nodes is.

Figure 11: Dominance hierarchy for live animals. Linear
chain hierarchies match with our simulated model of domi-
nance behavior, but it is important to note that no part of our
inference of dominance relationships enforces linear chains.
So if the live animals had been an egalitarian troop with lit-
tle to no aggressive displays, or if the dominance rankings
had not been established, we would expect to see a different
kind of dominance structure.
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Figure 12: Histogram of association preference values re-
covered from the live animals. The secondary mode in this
distribution is less distinct, but there still is a separation into
low and high preference levels.

In future work we would like to expand our approach to
include more sophisticated inference techniques. It may be
the case that fairly simple probabilistic models will be able
to capture some of the structure that we are not able to re-
cover directly from observed behaviors. Association and
dominance are clearly not independent relationships, and in-
corporating some notion of how each affects the other may
allow us to improve the accuracy of our inference.
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