Learning Schooling Behavior from Observation

Brian Hrolenok and Tucker Balch

Georgia Institute of Technology, Atlanta, GA 30332
{bhroleno, balch} @cc.gatech.edu

Abstract

Agent-based simulation is a valuable tool for biologists
studying animal behavior, however constructing models for
simulation is often a time-consuming manual task, and val-
idation of these models requires a principled approach. We
present a framework for using machine learning techniques
to automatically construct behaviors from tracking data of
live animals from video that can be run in a simulated en-
vironment. Using this framework, we provide results for au-
tomatically learning the schooling behavior of Notemigonus
crysoleucas.

Introduction

The motivation for this work has been to enable the work
of biologists that study collective behavior through agent-
based models. Agent-based models have been successful
in analyzing the behavior of social insects such as ants and
bees (Pratt et al., 2005; List et al., 2009), although cur-
rently such models are constructed after manual processing
of video of the collective behavior of the animal. An auto-
mated method for constructing these models would enable
more rapid iterative refinement of biological theories by al-
lowing researchers to test hypotheses in silico with param-
eters that would be difficult to manage in real animals, as
well as provide a tool for performing principled validation
as outlined by Yang et al. (2012).
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Figure 1: Workflow for automatically constructing exe-
cutable behaviors from observation

The manual process of model creation usually consists of
frame-by-frame annotation of video of the animals in ques-
tion and statistical analysis of the resulting data, and the au-
tomation of this process can be decomposed into two corre-
sponding subproblems: multi-target tracking of animals in
video, and learning an executable model from those tracks.
This workflow is outlined in Figure 1. The computer vision
community has developed a number of algorithms for solv-
ing the multi-target tracking problem in specific domains, in-
cluding tracking biological agents such as humans and ants
(Feldman et al., 2012). Given a tracking algorithm that can
produce tracks of individual agents with reasonable accu-
racy, the task is then to construct an executable agent-based
model of behavior from the given data.

Learning fish schooling behaviors

The schooling of Notemigonus crysoleucas is an interesting
collective behavior, one example of many types of “flock-
ing” behavior found in nature. While the motion of the
group as a whole is generally very complex, Reynolds
(1987) has shown that individuals following fairly simple
local rules can result in global flocking behavior. If we can
then correctly learn a model of how the fish react to the
features of their local surroundings, we should be able to
reproduce the global schooling behavior by simulating fish
in a similar environment that react according to the learned
model. This means we need to identify which features of the
environment the fish are reacting to, compute those features
for each track in the tracking data, learn a mapping from fea-
tures to reactions, and compute the identified features as part
of the simulation.

Fish sensor features

There are several important features of the environment that
effect how individual fish act as part of a school, and how
the schooling phenomenon arises in groups of fish. We took
inspiration from both classic flocking literature (Reynolds,
1987) and more recent work by Katz et al. (2011) in deter-
mining which features to include. From the collected track-
ing data we compute 13 features: 8 proximity sensors, the
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Figure 2: Sensor model for Notemigonus crysoleucas

z and y components of the normalized vector to the school
center, the = and y components to the nearest obstacle, and
a binary (near-far) distance to the school centroid that is one
if the fish is within 3 body lengths of the school centroid and
zero otherwise. The proximity sensors are thresholded at 4
body lengths, and the obstacle vector and school centroid
calculation are both limited to objects within 1m.

These specific features can be thought of roughly corre-
sponding with three of the classic components proposed by
Reynolds: the 8 proximity sensors are useful for determin-
ing separation, the obstacle vector provides a mechanism
for avoiding environmental obstacles, and the group center
vector influences cohesion. Notice that we do not include
any alignment term, and as Katz et al. suggest, the apparent
group alignment is an emergent phenomenon, not a deter-
mining feature that the individual fish react to.

Fish actuators

In order to learn how the fish should react to a given feature
vector, we must also quantify how the observed fish actually
moved in response to the computed features. The tracking
data includes the position (x,y) and orientation (6) of each
fish at each time step (see Figure 3). From consecutive time
steps, we can calculate the change in position and orientation
as a rough estimate of the velocity of the fish in reaction to its
local environment, as long as the time interval is relatively
short (the tracking data we use is computed frame-to-frame
from video running at 30Hz).

Learning

Using the paired feature vector and velocity estimate as
training data, we can construct a k-NN which maps any new
feature vector to the k£ most similar training instances and
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Figure 3: Actuator model for Notemigonus crysoleucas

the associated observed motions. One interesting difference
from the standard k-NN in this instance is that the output
associated with each feature vector is a continuous set of
values describing how the fish moved, rather than a discrete
class. In the standard k-NN with discrete output, each of
the k nearest neighbors to a given query ¢ votes for one of
the possible discrete outputs and the output with the highest
number of votes is returned as the class for the query. We
can generalize this by returning the output of an arbitrary
function g of the k nearest neighbors for a given g:
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where d(g;, q) is the distance between ¢ and ¢;. In the
standard k-NN, the function g just returns the class with the
maximum number of votes, or the mode of the classes of
the k neighbors. Other choices for g include the mean, or
median. Empirically, we’ve found that sampling randomly
from the & neighbors works better than taking the mean.
This might be due to the fact that the animals do not behave
in a completely deterministic manner: In the case where the
fish is approaching a wall head-on it may turn left or right
to avoid it, but the average of both cases would be to head
straight forward, leading to a collision with the wall. On the
other hand, sampling randomly from the neighbors would
produce both left and right turns, and in the proportion that
they are represented in the data.

Simulations of learned behavior
For our training set, we used tracking data collected from a
54 minute video of 30 Notemigonus crysoleucas schooling
in a shallow tank 2.1 meters long by 1.2 meters wide'. From

!This data was one replicant from the experiments performed
in Katz et al. (2011).



the tracks we computed the 13 features and 3 velocities de-
scribed previously. The collected data amounted to roughly
2.6 million input/output pairs, which we used as training
data for a k-NN. We constructed a simulation with 30 fish in
a similar environment using BioSim, a freely available simu-
lation toolkit?. At each time step, each fish computes the 13
features described earlier and sets its velocity by selecting
from the k nearest neighbors. Figure 4 shows screenshots
from the simulation and the resulting schooling behavior.

The fish are initially placed in the environment at random
locations moderately spread out, but they quickly form into
a single dense school. The school tends to stay close to the
boundaries, tightly clustered. This is very similar to the be-
havior of the real fish in the training data, as shown in Figure
5.

As discussed in our motivation, one reason such agent-
based simulations are useful is the ability to run experiments
in simulation that would be difficult or time consuming to
perform using live test animals. To illustrate this capability,
we ran a simulation of 300 fish in a larger (3m by 5m) tank.

Figure 6 shows a screenshot of the 300 fish simulation.
Notice how the fish have separated into several distinct
schools.

Conclusion and Future work

This work has illustrated how the process outlined initially
can be applied to learn the schooling behavior of fish from
video: by applying a standard multi-target tracking algo-
rithm to video to produce tracks of position and orientation,
then computing a set of input/output (features/motions) pairs
from the tracking data, then using those pairs as training data
for a learning algorithm (k-NN) to construct a mapping be-
tween observed features and agent output, and finally using
that mapping as the basis for a simulation. Our experimental
results show that the collective behavior of agents following
the learned behavior is qualitatively similar to the schooling
behavior which generated the training data.

It’s important to note that the choice of algorithm for both
the tracking and learning components are crucial. The noise
inherent in the tracks produced by the tracking algorithm
must be relatively small, otherwise the training data used by
the learning algorithm may be so noisy as to not permit an
accurate mapping. The tracking algorithm must also be able
to account for all the variables of interest, such as orienta-
tion. The choice of learning algorithm also has a profound
effect. In the case of schooling fish, it is apparent from flock-
ing models that the collective schooling behavior can arise
from purely local and reactive rules. In other words, the
mapping we’ve discussed so far is stateless in that the out-
put is dependent only on the observed features, and not any
internal memory or state. However there are many inter-
esting types of behavior that are not stateless in this sense,

https://github.com/biotracking/biosim2

such as foraging in ants (Yang et al., 2012) or the honey bee
“waggle dance” (Oh et al., 2005). Learning these types of
behaviors requires an algorithm that can handle state such
as presented by Balch et al. (2006), and such algorithms are
a focus of our current and future work.
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Figure 4: Simulated fish at consecutive intervals. The fish have a strong tendency to stay with the school, and congregate near
the walls of the tank much like the real fish.
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Figure 5: Replayed tracking data of real fish.
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Figure 6: Simulation of 300 fish in a large tank using the same 30 fish training data



