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ABSTRACT

A classic example of multiagent coordination in a shared envi-
ronment involves the use of pheromone deposits as a communi-
cation mechanism. Due to physical limitations in deploying actual
pheromones, we propose a sparse representation of the pheromones
using movable beacons. There is no communication between the
beacons to propagate pheromones; instead, robots make movement
and update decisions based entirely on local pheromone values.
Robots deploy the beacons throughout the environment, and sub-
sequently move them and update them using a variation of value
iteration. Simulation results show that our approach is effective at
finding good trails, locally improving them, and adapting to dy-
namic changes in the environments.
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1. INTRODUCTION

One challenge in swarm robotics is performing effective commu-
nication. Broadcast communication may be unattractive due to en-
vironmental factors, limited range and power, lack of global com-
munications infrastructure, or overly congested channels. Instead,
swarm robotics research has often focused on local interaction and
forms of indirect communication such as pheromone deposits. In
this paper we show a formal approach to pheromone deposit com-
munication via beacons deployed in the environment by the robots.
(We will use the terms “robot” and “ant” interchangeably.)

In previous work [16] we presented a technique to enable a
large swarm of ant-like agents to perform foraging and other trail-
following tasks by depositing, updating, and following pheromones
in the environment. Unlike much previous work in the mul-
tiagent pheromone-based foraging literature, our approach cast
pheromones as state utility values, and applied formal utility update
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equations based loosely on value iteration and temporal differenc-
ing. The work also employed multiple simultaneous pheromones
to direct various aspects of the task at hand. Using these equa-
tions, we were able to demonstrate collaborative foraging using two
pheromones (one which ultimately defined a gradient to food, and
one back to the ants’ nest). We went further than this, demonstrat-
ing trail optimization, discovery of self-intersecting tours involving
many waypoints (and many pheromones), and adaptation to dy-
namic changes in the environment.

That work was motivated in part by our research in swarm
robotics: we sought a formal language and substrate with which
swarms of agents might perform a range of cooperative tasks. The
approach was also of value to swarm robotics because it did not re-
quire odometry or localization, and had a light computational load.
However, the agents lived in a 2d discretized grid-world environ-
ment, with pheromones stored in the grid of the environment itself.

The present paper represents a significant advance over this early
work, adapting the pheromone idea to a more realistic robot sce-
nario through the use of deployable and modifiable beacons as
a sparse representation of the pheromone environment. The ant
robots deploy the beacons, and subsequently follow, update, move,
and remove them. From the perspective of the robots, the beacons
are a graph of states with utility values, just as the earlier grid-
world was a denser graph of the same. Each beacon stores one
value per pheromone employed by the swarm. Beacons only repre-
sent local information, and do not communicate with one another
to spread pheromones. Rather, after deploying the beacons, robots
update pheromone values using similar equations as [16], and like-
wise the robots make routing decisions based on the pheromones in
nearby beacons. After discovering a trail, the robots may addition-
ally move the beacons in order to optimize it. The work presented
uses robots in simulation, but its approach is specifically designed
to be deployable to actual robots in our laboratory. Our purpose
here is to extend the approach taken in [16] to environments with
more realistic assumptions, taking a significant step towards de-
ploying to physical robots in our laboratory.

We begin the paper with a discussion of previous work in
pheromone-based multagent interaction, marker-based robotic nav-
igation and optimization, and other related topics. We then intro-
duce and discuss the proposed model, followed by experimental
work with the model.

2. PREVIOUS WORK

Indirect communication through pheromone deposits is an exam-
ple of stigmergy, a term coined by Pierre-Paul Grassé in the 1950s
to describe a mechanism in which colonies of a certain genus of
termites collaborate to build a nest [4, 7]. Many examples of stig-
mergy appear in nature, including the foraging behavior of ants.



Ants leave pheromone deposits as they move in the environment,
and their navigation is stimulated through local observations of
pheromone strength and gradient. The global ant foraging behavior
emerges through these simple local pheromone interactions. Other
familiar kinds of indirect communication through the environment
include leaving footsteps in the snow; or leaving trails of pebbles
or breadcrumbs along a journey in order to help find a way home.

The collective behavior of ants that emerges from communica-
tion through pheromones has been widely studied in both artifi-
cial life and in robotics. Beyond providing a robust, decentral-
ized, and distributed means of communication, pheromone-based
swarms have also shown the ability to optimize trails, as observed
in [6]. The networks of paths constructed by ants have been com-
pared to minimal spanning trees [18] which may emerge from the
rapid accumulation of pheromone strength across shorter paths [2,
3]. By incorporating stochastic exploration and evaporation of old
pheromones, swarms can be shown to adapt to dynamic situations
such as changing goals or obstacles [12, 20]. We have demon-
strated several of our own examples in [16].

Some pheromone-based reinforcement learning algorithms have
been proposed for foraging problem domains. Most of these in-
volve agents that use a fixed pheromone depositing procedure, and
incorporate the existing pheromone values into their action selec-
tion and update mechanisms [8, 10, 11].

Several works have explored agent behaviors that take advan-
tage of larger vocabularies of pheromones. For example, multiple-
pheromone models have been used to establish separate gradients
for different tasks [5, 16, 25], rather than relying on arbitrary a
priori mechanisms to augment a one-pheromone model. Vaughan
et al. have proposed an alternaive involving pheromones that addi-
tionally indicate direction. Parunak et al. [17, 18] have exploited a
variety of techniques such as using pheromones with different se-
mantics, pheromones with different dynamics (e.g. different rates
of evaporation and propogation) and using history (e.g. weighing
pheromones more strongly in the direction of motion).

Several of the ant-inspired methods described so far rely on
the ability of agents to modify the environment. While there has
been some work on a robotic mechanism to deposit and sense
chemical trails [21], this could be impractical in many real scenar-
ios. One common approach is to rely on existing communications
mechanisms to share internal pheromone models. For example,
in [22, 23, 24], Vaughan et al. simulated stigmergic communica-
tion by making it possible for agents to share trails of waypoints
over a wireless network. Similarly, Payton et al. experimented
with “virtual pheromones” based on propagating discrete messages
between mobile robots with short-range omni-directional infrared
communications [19]. O’Hara et al. introduced the GNATS, a pre-
deployed line-of-sight sensor network to support robotic navigation
tasks [15]. They demonstrated successful distributed path planning
in this infrastructure using variants of the wavefront planning algo-
rithm [13] and the distributed Bellman-Ford algorithm [14]. Barth
et al. proposed a dynamic programming approach to swarm nagi-
vation based on deployable, but immobile relay markers [1]. This
approach also relies on communication between the markers in or-
der to establish and update the pheromone values. Ziparo et al.
used deployable, non-mobile RFID tags to help path planning and
exploration with large groups of robots [26].

It is important to note that the goal of our work is not the anal-
ysis of the network structure created by the topology of the bea-
cons in the environment, as this has been well covered by other
researchers. Instead, we focus on swarm robot behaviors which
may successfully employ a collective model in the face of severe
communications constraints (in this case, for the foraging task).

3. MODEL

Our foraging world is a bounded two-dimensional continuous
environment. A nest is located somewhere in the environment,
holding some number of robots (we will refer to them simply as
ants). The environment also holds some N food source locations
(in our experiments, we set N = 1). The environment also may
contain obstacles through which the ants may not travel.

The ants’ task is to bring as much food back to the nest as pos-
sible within a given time frame. This consists of several subtasks.
First, the ants must find a remote food location, and establish a
trail there. Second, the ants must repeatedly follow the trail to the
food location, harvest some food, ferry it back along the trail to the
nest, and deposit it there. Third, the ants should optimize the trail,
globally adopting new routes when they are found to be shorter, or
attempting to straighten (and shorten) the current trail locally.

To assist them in this task, the ants deposit three pheromones
and read them at various beacons the ants have deployed and or-
ganized throughout the environment. Each beacon represents the
state of pheromones in the environment at that location. The three
pheromones are:

e The foraging pheromone, used to build a gradient to food.
e The ferrying pheromone, used to build a gradient to the nest.

o The wandering pheromone, used to indicate the how often a
state has been visited.

Beacons and ants have the same communications range. Bea-
cons within the range of one another, and not occluded by an ob-
stacle, are defined as neighbors. Each ant will associate itself with
the nearest non-occluded beacon within its range, if any, and this
beacon is called the ant’s current beacon. Ants can read and update
pheromone information stored in their current beacon, and (notion-
ally by temporarily moving to the current beacon) its immediate
neighbors. Ants can also detect if food or the nest are within range.

Ants do not directly communicate with each other, and likewise
beacons do not communicate with each other. In fact, beacons need
not be wireless or even active: they could be buckets, RFID tags,
or other markers with limited visibility range. Ants only need to
be able to identify and home in on individual beacons, and to store
and retrieve data in them.

Each ant has a mode, either FORAGING or FERRYING, indicat-
ing the ant’s current task. All ants start FORAGING and located at
the nest. At each iteration an ant updates the pheromones of its
current beacon (if any), then performs one action (such as mov-
ing to the food or nest; exploring randomly; moving, deploying, or
deleting a beacon; etc.), then the ant updates the pheromones again
for good measure. The action decision process is described later.
Afterwards, each beacon depletes (evaporates) its foraging and fer-
rying pheromone values by multiplying them by a fixed constant
0 < B < 1. Except in the case of moving obstacles, depletion is not
required (B can be 1). We set § = 0.9. The wander pheromone is
not depleted; it is updated as described below.

3.1 States and Pheromones

Ants spread pheromone values from beacon to beacon using
roughly the same method as in the (beacon-less) [16]: a form of
value iteration. From a dynamic programming perspective, bea-
cons are the states in the environment, and pheromone values are
the utilities U, of those states, one per pheromone p. To illustrate
state (beacon) transitions, consider Figure 1, where the ant has re-
cently transitioned from state (beacon) s to state s’ and may transi-
tion to any of the s’ states in the immediate future. After reaching a



goal via a series of transitions, an ant will receive a positive reward
Rj, and change its mode from FORAGING to FERRYING or vice
versa. Specifically, when the ant has just changed to (or is start-
ing as) FORAGING, Ry,ying is set to a positive constant REWARD,
and when the ant has just changed to FERRYING, Ryprqging 18 set to
REWARD. In all other cases, R, = 0 for all p.

Updating. Tobe maximally general, let us start with the assump-
tion that for each s, the ants have available a model T(s',a,s/)
indicating the probability of transitioning to s/ from s’ if the ant
chooses to perform some action a € A. The update rule for each
pheromone p € {foraging, ferrying} is a variation the Bellman
Equation in which U, does not decrease:

UP(S,) < max <UP(S/)7 RP + YTS'XZT(Slv%s;/) UP(S;',)>
L

where 7 is a value between 0 and 1. However, in actuality transi-
tions are deterministic (or at any rate, 7 is not available to the ants),
which reduces the update equation to:

Up(s/) «— max (Up(s/)7 Rp(s/) +7/mlaxUp(s;')> €))

The wandering pheromone is updated so that the ant will move
away from commonly-visited beacons. Specifically:

Uwandering (S/)  Uwandering (S/) -1 @)

Following. When it is in the mode of transitioning from bea-
con to beacon, an ant’s policy is fixed: if the ant is FORAGING,
or FERRYING, or in certain situations wandering, it will move to
the neighboring state beacon whose pheromone for that mode is
highest. That is, it will select the beacon

argmax U (s
i

where p is foraging, ferrying, or wandering, as appropriate. We
refer to this action as following the pheromone trail.

It’s important to note here that the ants are updating all the
pheromones, but are only transitioning along one pheromone at a
time. This has an important quality which crucially differentiates
this method from plain value iteration. Because the ant is updating
all pheromones as it transitions from the food to the nest (or back),
it can build up a gradient in O(n) time, where n is the number of
transitions. Contrast this to traditional dynamic programming or re-
inforcement learning approaches, whose repeated backups require
O(nz) time. This significant improvement in complexity is made
possible by the symmetry of the environment in the ant foraging
problem: the probability of transitioning from state s; to state s; is
the same as the probability of transitioning from s; to s;.

3.2 Algorithm with Pre-Positioned Beacons

To introduce the algorithm more gently, we first present a ver-
sion that considers the beacons as fixed in the environment. This
algorithm is the sparse analogue of the dense pheromone grid struc-
ture in [16] and is shown here to demonstrate its close similarity. In
the next section we will then extend this to the full algorithm, with
beacon deployment, movement, and deletion.

Robustness can be accomplished with some degree of random-
ness. We add this in two ways. First, with small probability the
ant will initiate a temporary exploration mode in which it performs
random transitions some number of times before resuming normal

Figure 1: State transition example for the beacon model. The
ant has just transitioned from state s to state s’, and now is
preparing to transition to one of the s”. State transitions are
reflexive.

operation. Second, if the ant does not (with some probability) de-
cide to do its standard “pheromone following” procedure, it will
instead follow the wandering pheromone, which pushes it to areas
not well explored.

The algorithm relies on certain constants: REWARD (set to 1.0) is
how much reward the ant receives when it reaches the nest or food;
COUNT is how long the ant will stay in exploration mode; pgypiore
is how likely the ant will enter exploration mode; and pgyjjoy, is how
likely the ant will do pheromone following. An ant will always
have a current beacon unless no beacons are yet placed near the
nest. The algorithm looks like this:

1: global variables:
2 mode < FORAGING, count <+ 0, and reward + REWARD
3: loop
4: ¢ < compute current beacon, if any

5: if c exists then

6: UpdatePheromones(c)

7 if food within range of me and mode=FORAGING then
8: Move to food, mode < FERRYING,

9: reward <— REWARD

10: else if nest within range of me and mode=FERRYING then
11: Move to nest, mode < FORAGING,

12: reward < REWARD

13: else if count>0 and c exists and has neighbors then

14: Move to random neighbor of ¢, count=count—1

15: else if Rand(pgypiore) then

16: count < COUNT

17: else if ¢ exists and CanFollow(c) and Rand(pgy,,,) then
18: Follow(mode,c)

19: else if ¢ exists then

20: Follow(WANDERING,c)

21: ¢ « recompute current beacon, if any

22: if c exists then

23: UpdatePheromones(c)

This algorithm directly extends [16] to the more general connec-
tivity graph case. The functions used in the algorithm are:

UpdatePheromones(current beacon). Each pheromone is up-
dated using Equations 1 and 2, where s’ is the current beacon, and
where either Rpyqging OF Rferrying 18 set to the current reward, de-
pending on whether the mode is presently FERRYING or FORAG-
ING respectively. The other R), is set to 0.

Rand(prob). Return true with probability prob, else false.
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(a) Initial bounded environment with nest
(square) top left, food (diamond) bottom
right, and a T-shaped obstacle (shown pix-
elated, but the environment is continuous).

(b) Ants leave the nest and establish beacons
(shown at half range). Ferrying-pheromone
strength shown on left half of beacons. Ants
are black dots centered at current beacons.

(c) First path to food established. Foraging-
pheromone strength shown on right half of
beacons. Food-laden ants are red dots cen-
tered at current beacons.
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(d) Second shorter path to food established.

been abandoned.

(e) Second path is improved. First path has

(f) Ants move beacons to begin to optimize
the path. Disused pheromones are depleted.

Figure 2: Example trace of the algorithm in action.

CanFollow(mode, current beacon). Let beacon B be the neigh-
bor of the current beacon with the highest pheromone value cor-
responding to mode. If B exists and its pheromone value is > 0,
return true, else false.

Follow(mode, current beacon). Move to the neighbor of the cur-
rent beacon with the highest pheromone value corresponding to
mode (break ties randomly).

3.3 Deploying, Moving, and Deleting Beacons

This initial algorithm is sensitive to beacon location. If the bea-
cons are positioned poorly, the ant trail will be suboptimal; and if
the graph is disconnected, the ants may not be able to find a trail to
food at all. For these reasons it is advantageous for the ants to be
able to deploy the beacons on their own, then later move them and
ultimately remove excess or unnecessary beacons to optimize the
graph. We now extend the algorithm to include these cases.

This requires a few new constants: ppepjoy is the probability of
deploying a new beacon, and paseye is the probability of moving
the current beacon. Beacon deletion always occurs if it is feasi-
ble. Certain other constants are described later. The algorithm only
differs from the previous one in certain lines, denoted with [ j .

The revised algorithm is:

1
2
3
4:
5:
6
7
8

9.

10:
11:
12:

13:
14:

15:
16:
17:
18:

19:
20:

21:

: global variables:

mode «+— FORAGING, count < 0, and reward « REWARD

: loop

¢ «— compute current beacon, if any

if c exists then
UpdatePheromones(c)

if food within range of me and mode=FORAGING then
Move to food, mode <+ FERRYING,
reward < REWARD

else if nest within range of me and mode=FERRYING then
Move to nest, mode « FORAGING,
reward < REWARD

else if ¢ exists and CanRemove(c) then
Remove(c)

else if count>0 and c exists and has neighbors then
Move to random neighbor of ¢, count=count—1
else if Rand(pgypiore) then
count < COUNT

else if ¢ exists and CanMove(c) and Rand(pysove) then
Move(c)

else if ¢ exists and CanFollow(c) and Rand(pgyj0,,) then

|
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Figure 3: Four experimental obstacle environments. Left to
right: L, Block, Block2, Ant Clock Obstacle. White is free
space and black is the obstacle.

22: Follow(mode,c)

23: else if CanDeploy() and Rand(ppepioy) then
24: Deploy()

25: else if ¢ exists then
26: Follow(WANDERING,c)

r A
27: | else move to the closest beacon, breaking ties randomly

28: ¢ «— recompute current beacon, if any
29: if c exists then
30: UpdatePheromones(c)

Note line 27: deleting or moving a beacon can cause an ant as-
sociated with that beacon to become stranded such that there are no
beacons within its range. On line 27 the ant searches (for example,
in a spiral) to find and move to the closest beacon.

The new deployment, deletion, and movement functions are:

CanDeploy(). The goal is to only deploy a beacon into an un-
crowded region, and only if there are beacons left to deploy.

This requires three new constants: DEPLOYTRIES (10), DE-
PLOYRANGE (0.9), and DEPLOYCROWD (0.6). If the maximum
number of beacons has been reached, return false. Otherwise the
ant tries DEPLOYTRIES times to find a random non-occluded loca-
tion no further than DEPLOYRANGE X range away from the cur-
rent beacon, or from the ant (if there is no current beacon), such
that there is no beacon within DEPLOYCROWD x range of that
location. If a location was found return true. Else return false.

The maximum number of beacons controls the overal beacon
density. Since we are most interested in sparse beacon deployment,
we’ve set this low (3).

Deploy(). Deploy a new beacon at the location computed by
CanDeploy(). Move the ant to that location.

CanMove(current beacon). The goal is to move the beacon pre-
cisely in-between neighbors likely to be on the ant trail, so as to
straighten the trail, without breaking other possibly important trails.

Let locations By and B, be the positions of the neighbors of the
current beacon with the highest foraging and ferrying pheromones
respectively, breaking ties randomly; let P; and P, be those for-
aging and ferrying pheromone values; and let W be the minimum
wander pheromone of the two. If the food is within range of the
ant, replace B with the food location and set P; = REWARD; like-
wise if the nest is within the range of the ant, replace B, with the
nest location and set P, = REWARD.

Compute a new location that is the midpoint between B and B,.
Return false if any of the following are true:
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Figure 4: Mean food collected for the L environment with
PExplore = 0.1, prrore =0

e If B; or B, do not exist, or By = By, or P, =0, or P, =0.

o If after relocating to the move location, the set of “interest-
ing” neighbors of the current beacon, as defined next, would
not be a subset of the neighbors of the beacon at the new lo-
cation. Notionally this can be done by moving the ant to the
location, testing, then moving back.

o If the new move location is not reachable from the current lo-
cation due to an obstacle or environmental border. Notionally
this can be done by moving the ant to the location, testing,
then moving back.

Else return true.

An “interesting” beacon is one which is likely to be part of
an important path. We’d prefer to not damage such paths. At
present we test for such beacons conservatively based on how of-
ten they they’ve been used (their wander pheromone). We define
two new constants: WANDERFRACTION (0.7) and MINWANDER
(200). A beacon is “interesting” if its wander pheromone is <
WANDERFRACTION xW (it’s not been very much) and if the wan-
der pheromone of the current beacon is < MINWANDER (the re-
gion is old enough to have reliable wander statistics).

Move(current beacon). Move the beacon, and the ant, to the mid-
point location computed by CanMove().

CanRemove(current beacon). There are two cases in which
we presently remove beacons: first, if the beacon appears to be
stranded or at the end of an abandoned string, and second, if the
beacon is redundant.

For the first test, we return true if the neighborhood of the current
beacon contains more than 2 other beacons, and the current beacon
is not within the range of the food or nest, and it’s old enough (its
wander pheromone is < MINWANDER).

For the second test, we return true if there is another beacon
(breaking ties randomly), called the merge beacon, within the range
of the current beacon which has both higher foraging and ferrying
pheromones, and which is within range of everything (food, nest,
other beacons) that are within the range of the current beacon.

If we fail both tests, we return false.

Remove(current beacon). Remove the current beacon. Set the
wander pheromone of the merge beacon (if any) to the minimum
of the merge beacon and the current beacon.
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3.4 Example

An example trace of the algorithm is shown in Figure 2. The
ants optimize the trail in two basic ways. First, they may adopt
a new route through the established beacons, or newly deployed
beacons. Second, they can move beacons and eventually remove
beacons which are “sufficiently close” to one another. Eventually
the ants establish a reasonably optimized route between the food
and nest, abandoning suboptimal routes and tightening up the best-
discovered route.

Note that the path will likely never be fully optimized in
this example because our present beacon-deployment and beacon-
movement rules are overly conservative: the beacon-movement
rule tries at all cost to avoid breaking chains; and the beacon-
deployment rule winds up refusing to deploy in certain situations
it perceives as overly crowded, even though they are needed to im-
prove the current route.

4. EXPERIMENTS

We tested our algorithm to demonstrate the ant’s ability to find
the food, to discover optimal transition sequences between the nest
and the food, and to recover when obstacles are added to the envi-
ronment. Our metric was the amount of food collected by all the
ants every 50 timesteps.

Obstacles. To perform our experiments, we constructed several
different obstacle environments, which are shown in Figure 3. We
chose these environments to test two aspects of the algorithm:
adaptively searching through the beacon graph (Exploration), and
moving beacons so as to optimize the path when allocated only a
limited budget of them (Optimization).

The L obstacle allowed ants to deploy beacons near the food
source but forced them to create a path around the edge of the en-
vironment. The ants could effectively explore the majority of the
landscape. The Block and Block2 obstacles forced ants into nar-
row corridors, and occupied much of the landscape. Finally, the
Ant Clock With Obstacle environment, discussed later, included a
large obstacle to complicate a dynamic environment. We compared
each of these obstacles with a Blank environment as a control. For
L, Block, Block2, and Blank the nest was placed in the upper left
corner at (10, 10), and the food in the lower right corner at (90, 90).

Minutiae. We ran 63 independent runs in the MASON simula-
tor [9] for 14,000 timesteps each. pryow and ppeproy were fixed

at 0.9. All experiments used 100 ants, a 100x100 bounded, contin-
uous world, and a beacon range of 10. We limited the number of
available beacons to 60 for Block, 100 for Block2, and 400 for all
other environments. These limits provide just enough beacons to
establish a trail for the given environment. We compared results af-
ter 2,000 and 14,000 timesteps using an ANOVA test with a Tukey
post hoc comparison at the 95% confidence level.

4.1 Exploration

We began by examining the ants’ ability to find better routes
through the graph given beacons which, once deployed, could not
be moved or deleted. Accordingly, we set ppove = 0, and peypiore
varied over 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9 We studied two
cases: removing obstacles (which created new situations to exploit)
and adding new obstacles (which had to be worked around).

Removing obstacles. We began by letting the ants discover a
suboptimal trail around some obstacle for 3,000 timesteps, then re-
moved the obstacle to see how the ants would find new routes to
take advantage of their revised situation. Our obstacle of choice
for this experiment was the L obstacle. Figure 4 shows the perfor-
mance with pgypiore = 0.1 before and after removing the L obstacle.
As can be seen, the ants rapidly adapt to the new situation. After
the obstacle is removed, performance converges rapidly to approxi-
mately the same performance of the ants on the Blank environment,
as the ants find a superior path through the beacon graph. Changing
PExplore does not significantly alter this rate of adaptation: though
larger values of pgypiore generally result in significantly lower total
food collection as more time is spent exploring.

Adding obstacles. Next we examined how the ants would re-
act to environmental changes that made previously good trails no
longer viable. We let the ants explore an empty environment for
3000 time steps, and then introduced obstacles. When an obsta-
cle was introduced, it might collide with a number of beacons and
ants. We treated these as destructive events to the beacons and ants.
Specifically, a beacon in collision was automatically removed. An
ant in collision was “killed” — it was eliminated entirely, and so the
total count of ants was reduced by one. We chose to do this rather
than artificially “restart” the ant at the nest or “move” it to a safe
location.

Figure 5 shows the ants’ performance for two values of pgyyore-
In both cases we see that the ants can recover, but their perfor-
mance after the obstacle is introduced is reduced proportionally to
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Figure 6: Effect of encountering and adapting to an obstacle while following a moving food source. p,,,, = 0

the number of resources (ants and beacons) that were destroyed by
the obstacle. The L obstacle, which exhibits the best recovery, cov-
ers a smaller area than either Block or Block2, both of which show
more limited performance.

In comparing the two graphs, it is important to note the scale.
While the ants recover faster with a higher pgyyor value, their
overall performance is less than the ants with a lower pgypiore. This
is essentially the same situation as noted in the previous experiment
(removing obstacles): as the ants spend more time exploring (rep-
resented by higher pgypjore values), they spend less time ferrying
food to the nest. As pgypjore approaches 1, the performance of the
ants drops dramatically as they spend more time exploring.

4.2 Dynamic Food Location

Having shown that the ants could adopt better trails where the
food location was not moving, we next tested to see if this held
when the food was moving. To do this, we recreated an experi-
ment performed in [16], called the “Ant Clock”. In this experiment,
the nest started in the center of the environment (50, 50), and the
food was initially placed due east, 10 distance units from the right
edge of the environment. At each timestep, the food would rotate
about the nest in a clockwise direction at one-quarter of a degree
per timestep. We placed an obstacle north of the nest such that the
food would just clear the left and right edges of the obstacle in its
orbit about the nest (see Figure 3). As a control we had the food
source rotate about the nest, but without the obstacle to the north.
We set pyrove = 0, and varied prpiore-

Without the obstacle, the ants ably adapted to the constantly
moving obstacle, maintaining an approximately straight-line path
at all times. With the obstacle, the ants’ path would effectively
“bend” around the obstacle as the food passed by it, but eventually
the exploration would enable the ants to reestablish an optimized a
straight path. This “bending” is reflected in the periodic drops in
performance in Figure 6. Figures 6(a) and 6(b) illustrate another
tradeoff of more exploration: higher values of pgypjore decrease the
absolute amount of food returned the nest; but higher pgypiore val-
ues also decrease the severity of the periodic drops. The increased
exploration prevents the ants from spending too much time on the
established, suboptimal “bent” trail.

4.3 Optimization

In our final experiment, we set pgyyore = 0 and varied paove
test the ants’ ability to optimize trails with a limited number of
beacons. Here we used the Block and Block2 environments. We
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Figure 7: Mean food collected for the Block and Block2 envi-
ronments with pg,1,, = 0, Paggye = 0.1

sought to test one of the key ideas behind our algorithm: that a
sparse representation of pheromones benefits from physical revi-
sions and updates. In the experiment, let the ants establish a trail
for 3,000 timesteps and then removed the obstacle.

After removing the obstacle, the ants would begin to move the
beacons so as to straighten the trail, and eventually straighten the
trail entirely, deleting redundant beacons as the the trail became
shorter. For ppsove = 0.1, Figure 7 shows that while performance
statistically improves after the obstacle is removed, it does not con-
verge to the performance of Blank. We can surmise two possible
reasons for this: first, though beacons would be removed, the trail
was ultimately still denser with beacons than if the ants had been
(as in Blank) free to deploy beacons in the space. Second, moving
and deleting beacons would occasionally trap ants in “islands” —
small disjoint beacon groups — and unable to participate.

Even so, the results on the Block2 environment verified our vi-
sual inspection that the trail line was rapidly straightened out and
optimized. In the Block environment this effect is not seen, largely
because the number of beacons remained approximately the same
before and after optimization. Similar performance is seen with
PMove = 0.5 and PMove = 0.9.

S. CONCLUSION

We presented an approach to establishing trails among swarm ant
robots using a non-invasive and non-destructive stigmergic com-
munication in the form of deployable and movable beacons. The



robots use those beacons as a sparse representation of a pheromone
map embedded in the environment. The algorithm uses a variation
of value iteration to update pheromones and make transitions from
beacon to beacon. We demonstrated the efficacy of the technique
and explored its present robustness, and optimization capabilities.

This work is intended as a stepping stone to actual deployment
on swarm robots, and using sensor motes as beacons. This deploy-
ment is our first task in future work. We will also examine extend-
ing the beacon model to more collaborative tasks than simply estab-
lishing trails. For example, in other experiments we have demon-
strated sophisticated self-crossing, multi-waypoint tours. We be-
lieve we can also employ beacons in this model to define regions
to avoid or requests for assistance (to move objects or establish for-
mations, for example).
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